共 50 条
Rapid assessments of light-duty gasoline vehicle emissions using on-road remote sensing and machine learning
被引:10
|作者:
Xia, Yan
[1
]
Jiang, Linhui
[1
]
Wang, Lu
[1
]
Chen, Xue
[1
]
Ye, Jianjie
[5
]
Hou, Tangyan
[1
]
Wang, Liqiang
[1
]
Zhang, Yibo
[1
]
Li, Mengying
[1
]
Li, Zhen
[1
]
Song, Zhe
[1
]
Jiang, Yaping
[1
]
Liu, Weiping
[1
]
Li, Pengfei
[3
]
Rosenfeld, Daniel
[4
]
Seinfeld, John H.
[2
]
Yu, Shaocai
[1
,2
]
机构:
[1] Zhejiang Univ, Coll Environm & Resource Sci, Res Ctr Air Pollut & Hlth, Key Lab Environm Remediat & Ecol Hlth,Minist Educ, Hangzhou 310058, Zhejiang, Peoples R China
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] Hebei Agr Univ, Coll Sci & Technol, Baoding 071000, Hebei, Peoples R China
[4] Hebrew Univ Jerusalem, Inst Earth Sci, Jerusalem, Israel
[5] Bytedance Inc, Hangzhou 310058, Zhejiang, Peoples R China
基金:
中国国家自然科学基金;
关键词:
On-road remote sensing;
Machine learning;
Vehicle emissions;
Rapid assessments;
REAL-DRIVING EMISSIONS;
UNITED-STATES;
AIR-POLLUTION;
NOX EMISSIONS;
MODEL;
D O I:
10.1016/j.scitotenv.2021.152771
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
In-time and accurate assessments of on-road vehicle emissions play a central role in urban air quality and health policymaking. However, official insight is hampered by the Inspection/Maintenance (I/M) procedure conducted in the laboratory annually. It not only has a large gap to real-world situations (e.g., meteorological conditions) but also is incapable of regular supervision. Here we build a unique dataset including 103,831 light-duty gasoline vehicles, in which on-road remote sensing (ORRS) measurements are linked to the I/M records based on the vehicle identification numbers and license plates. On this basis, we develop an ensemble model framework that integrates three machining learning algorithms, including neural network (NN), extreme gradient boosting (XGBoost), and random forest (RF). We demonstrate that this ensemble model could rapidly assess the vehicle-specific emissions (i.e., CO, HC, and NO). In particular, the model performs quite well for the passing vehicles under normal conditions (i.e., lower VSP (<18 kw/t), temperature (6-32 degrees C), relative humidity (<80%), and wind speed (<5 m/s)). Together with the current emission standard, we identify a large number of the 'dirty' (2.33%) or 'clean' (74.92%) vehicles in the real world. Our results show that the ORRS measurements, assisted by the machine-learning-based ensemble model developed here, can realize day-to-day supervision of on-road vehicle-specific emissions. This approach framework provides a valuable opportunity to reform the I/M procedures globally and mitigate urban air pollution deeply.
引用
收藏
页数:11
相关论文