Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation

被引:73
|
作者
Jia, Yuheng [1 ]
Liu, Hui [2 ]
Hou, Junhui [2 ,3 ]
Kwong, Sam [2 ,3 ]
Zhang, Qingfu [2 ,3 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 51800, Peoples R China
关键词
Tensors; Sparse matrices; Symmetric matrices; Matrix decomposition; Urban areas; Feature extraction; Electronic mail; Multi-view spectral clustering; tensor low-rank representation; tensor low-rank norm;
D O I
10.1109/TCSVT.2021.3055039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling. Unlike the existing methods that all adopt an off-the-shelf tensor low-rank norm without considering the special characteristics of the tensor in MVSC, we design a novel structured tensor low-rank norm tailored to MVSC. Specifically, we explicitly impose a symmetric low-rank constraint and a structured sparse low-rank constraint on the frontal and horizontal slices of the tensor to characterize the intra-view and inter-view relationships, respectively. Moreover, the two constraints could be jointly optimized to achieve mutual refinement. On basis of the novel tensor low-rank norm, we formulate MVSC as a convex low-rank tensor recovery problem, which is then efficiently solved with an augmented Lagrange multiplier-based method iteratively. Extensive experimental results on seven commonly used benchmark datasets show that the proposed method outperforms state-of-the-art methods to a significant extent. Impressively, our method is able to produce perfect clustering. In addition, the parameters of our method can be easily tuned, and the proposed model is robust to different datasets, demonstrating its potential in practice. The code is available at https://github.com/jyh-learning/MVSC-TLRR.
引用
收藏
页码:4784 / 4797
页数:14
相关论文
共 50 条
  • [31] Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View Subspace Clustering
    Chen, Yongyong
    Wang, Shuqin
    Peng, Chong
    Hua, Zhongyun
    Zhou, Yicong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4022 - 4035
  • [32] Consensus latent incomplete multi-view clustering with low-rank tensor constraint
    Ji, Guangyan
    Lu, Gui-Fu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3813 - 3825
  • [33] Error-robust low-rank tensor approximation for multi-view clustering
    Wang, Shuqin
    Chen, Yongyong
    Jin, Yi
    Cen, Yigang
    Li, Yidong
    Zhang, Linna
    KNOWLEDGE-BASED SYSTEMS, 2021, 215
  • [34] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Liu, Guoqing
    Ge, Hongwei
    Su, Shuzhi
    Wang, Shuangxi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38141 - 38164
  • [35] Consensus latent incomplete multi-view clustering with low-rank tensor constraint
    Guangyan Ji
    Gui-Fu Lu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3813 - 3825
  • [36] Multi-view Clustering Based on Low-rank Representation and Adaptive Graph Learning
    Yixuan Huang
    Qingjiang Xiao
    Shiqiang Du
    Yao Yu
    Neural Processing Letters, 2022, 54 : 265 - 283
  • [37] Multi-view Clustering Based on Low-rank Representation and Adaptive Graph Learning
    Huang, Yixuan
    Xiao, Qingjiang
    Du, Shiqiang
    Yu, Yao
    NEURAL PROCESSING LETTERS, 2022, 54 (01) : 265 - 283
  • [38] Multi-view intrinsic low-rank representation for robust face recognition and clustering
    Wang, Zhi-yang
    Abhadiomhen, Stanley Ebhohimhen
    Liu, Zhi-feng
    Shen, Xiang-jun
    Gao, Wen-yun
    Li, Shu-ying
    IET IMAGE PROCESSING, 2021, 15 (14) : 3573 - 3584
  • [39] Robust Multi-View Spectral Clustering via Low-Rank and Sparse Decomposition
    Xia, Rongkai
    Pan, Yan
    Du, Lei
    Yin, Jian
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2149 - 2155
  • [40] MULTI-VIEW CLUSTERING VIA SIMULTANEOUSLY LEARNING GRAPH REGULARIZED LOW-RANK TENSOR REPRESENTATION AND AFFINITY MATRIX
    Chen, Yongyong
    Xiao, Xiaolin
    Zhou, Yicong
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1348 - 1353