Dirichlet to Neumann operator on differential forms

被引:36
|
作者
Belishev, Mikhail [2 ]
Sharafutdinov, Vladimir [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] VA Steklov Math Inst, Petersburg Dept, St Petersburg 191023, Russia
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2008年 / 132卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/j.bulsci.2006.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the Dirichlet to Neumann operator on exterior differential forms for a compact Riemannian manifold with boundary and prove that the real additive cohomology structure of the manifold is determined by the DN operator. In particular, an explicit formula is obtained which expresses Betti numbers of the manifold through the DN operator. We express also the Hilbert transform through the DN map. The Hilbert transform connects boundary traces of conjugate co-closed forms. (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:128 / 145
页数:18
相关论文
共 50 条
  • [21] On the complex symmetry of the Dirichlet-to-Neumann operator
    Knockaert, L.
    De Zutter, D.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 1372 - 1375
  • [22] The Dirichlet-to-Neumann operator on rough domains
    Arendt, W.
    ter Elst, A. F. M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (08) : 2100 - 2124
  • [23] Construction of Dirichlet forms on standard forms of von Neumann algebras
    Park, YM
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2000, 3 (01) : 1 - 14
  • [24] Eigenvalue and gap estimates of isometric immersions for the Dirichlet-to-Neumann operator acting on p-forms
    Michel, Deborah
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 180 - 187
  • [25] The Pole Condition: A Pade Approximation of the Dirichlet to Neumann Operator
    Gander, Martin J.
    Schaedle, Achim
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 125 - +
  • [26] Spectral properties of the Dirichlet-to-Neumann operator for spheroids
    Grebenkov, Denis S.
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [27] The Dirichlet-to-Neumann operator via hidden compactness
    Arendt, W.
    ter Elst, A. F. M.
    Kennedy, J. B.
    Sauter, M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (03) : 1757 - 1786
  • [28] On the Schur complement form of the Dirichlet-to-Neumann operator
    Knockaert, L.
    De Zutter, D.
    Lippens, G.
    Rogier, H.
    WAVE MOTION, 2008, 45 (03) : 309 - 324
  • [29] Convergence of the Dirichlet-to-Neumann Operator on Varying Domains
    ter Elst, A. F. M.
    Ouhabaz, E. M.
    OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 147 - 154
  • [30] Poincare duality angles and the Dirichlet-to-Neumann operator
    Shonkwiler, Clayton
    INVERSE PROBLEMS, 2013, 29 (04)