Thermal and rheological properties of microencapsulated phase change materials

被引:93
|
作者
Zhang, G. H. [1 ]
Zhao, C. Y. [1 ,2 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
MPCM; MPCS; Thermal properties; Rheological properties; Heat transfer; CONVECTION HEAT-TRANSFER; CHANGE MATERIAL SLURRIES; ENERGY-STORAGE; LATENT-HEAT; OCTADECANE; FLOW; PCM; MICROCAPSULES; PERFORMANCES; FABRICATION;
D O I
10.1016/j.renene.2011.04.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of microencapsulated phase change materials (MPCMs) is one of the most efficient ways of storing thermal energy. When the microencapsulated phase change material (MPCM) is dispersed into the carrier fluid, microencapsulated phase change slurry (MPCS) is prepared. Due to the relatively large surface area to volume MPCM and its large apparent specific heat during the phase change period, better heat transfer performance can be achieved. Therefore, MPCS can be used as both the energy storage and heat transfer media. This paper studies the thermal and rheological properties of a series of prepared MPCS. In the experiment: MPCS fabricated by dispersing MPCM into water with an appropriate amount of surfactant. The mass ratio of MPCM to water and surfactant was 10:90:1, 25:75:1, 35:65:1 in prepared MPCS samples, respectively. Then the thermal conductivity and specific heat of MPCS were measured by the Hot Disk. The melting/crystallizing temperature and fusion heat/crystallization heat of the phase change materials were obtained from a DSC (differential scanning calorimetry) during the heating/cooling process. Physical properties, such as viscosity, diameter and its size distribution of MPCS were investigated by a rheometer and a particle characterization system. Meanwhile, the chemical structure of the sample was analyzed using Fourier Transformed Infrared spectroscopy (FTIR). The results showed that the thermal conductivity and the specific heat of MPCS decreased with particle concentration for the temperatures below the melting point. Overall, the MPCS can be considered as Newtonian fluid within the test region (shear rate >200 s(-1) mass fraction <0.35). The viscosity is higher for bigger particle slurries. The findings of the work lead to the conclusion that the present work suggested that MPCMs can be used in "passive" applications or in combination with active cooling systems; and it also provided a new understanding for fabricating microencapsulated phase change slurry, it is for sure that to have a better potential for energy storage. Accordingly, it has demonstrated that the MPCS fabricated in the current research are suitable for potential application as heat transfer media in the thermal energy storage. (C) 2011 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:2959 / 2966
页数:8
相关论文
共 50 条
  • [21] Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage
    Liu, Lingkun
    Alva, Guruprasad
    Huang, Xiang
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 66 : 399 - 414
  • [22] Steady-state thermal comfort properties of fabrics incorporated with microencapsulated phase change materials
    Alay, Sennur
    Alkan, Cemil
    Gode, Fethiye
    JOURNAL OF THE TEXTILE INSTITUTE, 2012, 103 (07) : 757 - 765
  • [23] A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials
    Drissi, Sarra
    Ling, Tung-Chai
    Mo, Kim Hung
    Eddhahak, Anissa
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 110 : 467 - 484
  • [24] Synthesis and Properties of Microencapsulated Solid Paraffin Phase Change Materials
    Xu, Zhe
    Li, Jianqiang
    Zhang, Guocai
    MATERIALS FOR ENERGY CONVERSION AND STORAGE, 2012, 519 : 1 - 5
  • [25] Review on properties of microencapsulated phase change materials slurries (mPCMS)
    Jurkowska, Malgorzata
    Szczygiel, Ireneusz
    APPLIED THERMAL ENGINEERING, 2016, 98 : 365 - 373
  • [26] Thermal conductivity of cementitious composites containing microencapsulated phase change materials
    Ricklefs, Alex
    Thiele, Alexander M.
    Falzone, Gabriel
    Sant, Gaurav
    Pilon, Laurent
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 71 - 82
  • [27] Optimization strategies of microencapsulated phase change materials for thermal energy storage
    Wang, K. W.
    Yan, Ting
    Pan, W. G.
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [28] Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage
    Su, Weiguang
    Darkwa, Jo
    Kokogiannakis, Georgis
    Zhou, Tongyu
    Li, Yiling
    IMPROVING RESIDENTIAL ENERGY EFFICIENCY INTERNATIONAL CONFERENCE, IREE 2017, 2017, 121 : 95 - 101
  • [29] Thermal performance of carbon-based microencapsulated phase change materials
    Abdullah, A. Z. I.
    Abdollah, M. F. B.
    Tee, B. T.
    Amiruddin, H.
    Yamin, A. K. Mat
    Tamaldin, N.
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2015, 2015, : 17 - 18
  • [30] Effects of microencapsulated phase change materials on the thermal performance of gypsum board
    He, Yan
    Liu, Keyang
    Jiang, Mingjing
    Hooton, R. D.
    ENERGY AND BUILDINGS, 2024, 320