A VARIATIONAL APPROACH FOR ESTIMATING THE COMPLIANCE OF THE CARDIOVASCULAR TISSUE: AN INVERSE FLUID-STRUCTURE INTERACTION PROBLEM

被引:43
|
作者
Perego, Mauro [1 ]
Veneziani, Alessandro [1 ]
Vergara, Christian [2 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Univ Bergamo, Dipartimento Ingn Informaz & Metodi Matemat, I-24044 Dalmine, BG, Italy
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 03期
关键词
fluid-structure interaction; inverse problems; parameter estimation; vessel's rigidity; PARTITIONED PROCEDURES; ARTERIAL COMPLIANCE; AORTIC COMPLIANCE; FLOW; FORMULATION; ALGORITHMS; SIMULATION; MECHANICS;
D O I
10.1137/100808277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Estimation of the stiffness of a biological soft tissue is useful for the detection of pathologies such as tumors or atherosclerotic plaques. Elastography is a method based on the comparison between two images before and after a forced deformation of the tissue of interest. An inverse elasticity problem is then solved for Young's modulus estimation. In the case of arteries, no forced deformation is required, since vessels naturally move under the action of blood. Young's modulus can therefore be estimated by solving a coupled inverse fluid-structure interaction problem. In this paper we focus on the mathematical properties of this problem and its numerical solution. We give some well posedness analysis and some preliminary results based on a synthetic data set, i.e., test cases where the exact Young's modulus is known and the displacement dataset is numerically generated by solving a forward fluid-structure interaction problem. We address the problem of the presence of the noise in the measured displacement and of the proper sampling frequency for obtaining reliable estimates.
引用
收藏
页码:1181 / 1211
页数:31
相关论文
共 50 条
  • [41] A monolithic Lagrangian approach for fluid-structure interaction problems
    Ryzhakov, P. B.
    Rossi, R.
    Idelsohn, S. R.
    Onate, E.
    [J]. COMPUTATIONAL MECHANICS, 2010, 46 (06) : 883 - 899
  • [42] A STRUCTURAL PRIORITY APPROACH TO FLUID-STRUCTURE INTERACTION PROBLEMS
    AUYANG, MK
    GALFORD, JE
    [J]. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 1981, 103 (02): : 142 - 150
  • [43] A mode superpostion approach for fluid-structure interaction problems
    Ribeiro, P. M. V.
    Pedroso, L. J.
    [J]. REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2016, 32 (02): : 79 - 90
  • [44] An approach to the simulation of fluid-structure interaction in the aortic valve
    Carmody, CJ
    Burriesci, G
    Howard, IC
    Patterson, EA
    [J]. JOURNAL OF BIOMECHANICS, 2006, 39 (01) : 158 - 169
  • [45] AN APPROACH ON FLUID-STRUCTURE INTERACTION FOR HEMODYNAMICS OF CAROTID ARTERIES
    Lee, Sang Hyuk
    Kang, Seongwon
    Hur, Nahmkeon
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, VOL 2: FORA, 2012, : 253 - 257
  • [46] A Monolithic Approach of Fluid-Structure Interaction by Discrete Mechanics
    Vincent, Stephane
    Caltagirone, Jean-Paul
    [J]. FLUIDS, 2021, 6 (03)
  • [47] Inverse parameter estimation in resonant, coupled fluid-structure interaction problems
    Cuenca, J.
    Goransson, P.
    De Ryck, L.
    Lahivaara, T.
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 2155 - 2169
  • [48] Vibrating Loads Identification using Inverse Acoustics in Fluid-structure Interaction
    Manesh, M. Kojouri
    Hematiyan, M. R.
    Eghtesad, M.
    Necsulescu, D. S.
    Rezazadeh, A.
    [J]. MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 51 - +
  • [49] On a fluid-structure interaction problem for plaque growth: cylindrical domain
    Abels, Helmut
    Liu, Yadong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 345 : 334 - 400
  • [50] Homogenization and long time asymptotic of a fluid-structure interaction problem
    Allaire, Gregoire
    Ferriero, Alessandro
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (02): : 199 - 220