No contribution of morphine-6-glucuronide to clinical morphine effects after short-term administration

被引:0
|
作者
Lötsch, J [1 ]
Kobal, G [1 ]
Geisslinger, G [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Expt & Clin Pharmacol & Toxicol, D-91054 Erlangen, Germany
关键词
morphine-6-glucuronide; EEG; clinical effects;
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The primary metabolite of morphine, morphine-6-beta-glucuronide (M-6-G), is reported to contribute to the effects of morphine. The authors investigated the effects of M-6-G on the central nervous system (CNS) after short-term intravenous (IV) administration by employing both electroencephalograph (EEG) power spectra analyses and clinical signs as indicators of opioid effects. Three dosages of M-6-G, one dosage of morphine (bolus 10 mg/70 kg and 3.5 mg/70 kg/hour for 4 hours), a combination of morphine and M-6-G, and placebo were administered to 20 healthy volunteers as IV bolus plus IV infusion for 4 hours. M-6-G was dosed to produce steady state plasma concentrations that were either identical, 2 times, or 3 times higher than the M-6-G plasma concentrations observed after administration of morphine. The EEG background activity and clinical effects were recorded 3.5 hours after the infusion started. M-6-G failed to produce effects on any of the investigated EEG or clinical parameters at the doses tested. In contrast, morphine produced a significant increase in the alpha, and delta power of the EEG. In addition, morphine increased the subjects' ratings of tiredness, sickness, vertigo, and drowsiness, and decreased their level of performance in a tracking task. It was concluded that after short-term IV administration, M-6-G does not affect the CNS at the doses tested. Therefore, its contribution to clinical effects of morphine after short-term administration is questionable. The missing CNS effects were probably caused by the slow brain permeability of M-6-G, which in short-term treatment might not attain effective CNS concentrations.
引用
收藏
页码:351 / 354
页数:4
相关论文
共 50 条
  • [21] Role of morphine-6-glucuronide in morphine analgesia
    J.L. Plummer
    European Journal of Clinical Pharmacology, 2000, 56 : 599 - 599
  • [22] INTRATHECAL MORPHINE-6-GLUCURONIDE
    HARDY, PA
    BRITISH JOURNAL OF ANAESTHESIA, 1991, 66 (02) : 271 - 272
  • [23] Lack of analgesic effects of morphine-6-glucuronide after iv-administration in man
    Lotsch, J
    Stockmann, A
    Geisslinger, G
    Kobal, G
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 1996, 59 (02) : OIII3 - OIII3
  • [24] A SYNTHESIS OF MORPHINE-6-GLUCURONIDE
    LACY, C
    SAINSBURY, M
    TETRAHEDRON LETTERS, 1995, 36 (22) : 3949 - 3950
  • [25] Peripheral analgesic effects of morphine-6-glucuronide
    Meier, S
    Tegeder, I
    Geisslinger, G
    Lötsch, J
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2002, 365 : R108 - R108
  • [26] Central effects of morphine and morphine-6-glucuronide on tissue protein synthesis
    Hashiguchi, Y
    Molina, PE
    Preedy, VR
    Sugden, PH
    McNurlan, MA
    Garlick, PJ
    Abumrad, NN
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1996, 271 (03) : R619 - R625
  • [27] DIFFERENTIAL HEMODYNAMIC, METABOLIC AND HORMONAL EFFECTS OF MORPHINE AND MORPHINE-6-GLUCURONIDE
    MOLINA, PE
    HASHIGUCHI, Y
    AJMAL, M
    MAZZA, M
    ABUMRAD, NN
    BRAIN RESEARCH, 1994, 664 (1-2) : 126 - 132
  • [29] MORPHINE AND METABOLITE BEHAVIOR AFTER DIFFERENT ROUTES OF MORPHINE ADMINISTRATION - DEMONSTRATION OF THE IMPORTANCE OF THE ACTIVE METABOLITE MORPHINE-6-GLUCURONIDE
    OSBORNE, R
    JOEL, S
    TREW, D
    SLEVIN, M
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 1990, 47 (01) : 12 - 19
  • [30] Lack of morphine-6-glucuronide antinociception after morphine treatment. Is morphine-3-glucuronide involved?
    Faura, CC
    Olaso, MJ
    Cabanes, CG
    Horga, JF
    PAIN, 1996, 65 (01) : 25 - 30