Automatic Segmentation of Neonatal Images Using Convex Optimization and Coupled Level Set Method

被引:0
|
作者
Wang, Li [1 ,2 ,3 ]
Shi, Feng [1 ,2 ]
Gilmore, John H. [4 ]
Lin, Weili [2 ,5 ]
Shen, Dinggang [1 ,2 ]
机构
[1] Univ N Carolina, Dept Radiol, IDEA Lab, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, BRIC, Chapel Hill, NC 27515 USA
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing, Peoples R China
[4] Univ N Carolina, Dept Psychiat, Chapel Hill, NC USA
[5] Univ N Carolina, Dept Radiol, MRI lab, Chapel Hill, NC USA
来源
关键词
ACTIVE CONTOURS; CEREBRAL-CORTEX; RECONSTRUCTION; MRI; CLASSIFICATION; BRAIN;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate segmentation of neonatal brain MR images remains challenging mainly due to poor spatial resolution, low tissue contrast, high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although parametric or geometric deformable models have been successfully applied to adult brain segmentation, to the best of our knowledge, they are not explored in neonatal images. In this paper, we propose a novel neonatal image segmentation method, combining local intensity information, atlas spatial prior and cortical thickness constraint, in a level set framework. Besides, we also provide a robust and reliable tissue surfaces initialization for our proposed level set method by using a convex optimization technique. Validation is performed on 10 neonatal brain images with promising results.
引用
收藏
页码:1 / +
页数:3
相关论文
共 50 条
  • [41] Topology optimization for coupled thermal and structural problems using the level set method
    Iga A.
    Yamada T.
    Nishiwaki S.
    Izui K.
    Yoshimura M.
    [J]. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2010, 76 (761): : 36 - 43
  • [42] Convex Object(s) Characterization and Segmentation Using Level Set Function
    Shousheng Luo
    Xue-Cheng Tai
    Roland Glowinski
    [J]. Journal of Mathematical Imaging and Vision, 2022, 64 : 68 - 88
  • [43] Convex Object(s) Characterization and Segmentation Using Level Set Function
    Luo, Shousheng
    Tai, Xue-Cheng
    Glowinski, Roland
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (01) : 68 - 88
  • [44] Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model
    Chen, Yunjie
    Zhao, Bo
    Zhang, Jianwei
    Zheng, Yuhui
    [J]. MAGNETIC RESONANCE IMAGING, 2014, 32 (07) : 941 - 955
  • [45] Segmentation of agricultural images using level set and prior information
    Geng, Nan
    Yu, Wei
    Ning, Jifeng
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2011, 42 (09): : 167 - 172
  • [46] A semi-automatic clustering-based level set method for segmentation of endocardium from MSCT images
    Su, Qi
    Wong, Kwan-Yee K.
    Fung, George S. K.
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 6024 - +
  • [47] Level set segmentation of dermoscopy images
    Silveira, Margarida
    Marques, Jorge S.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 173 - +
  • [48] Automatic Segmentation of HEp-2 Cell Fluorescence Microscope Images Using Level Set Method Via Geometric Active Contours
    Al-Dulaimi, Khamael
    Banks, Jasmine
    Tomeo-Reyes, Inmaculada
    Chandran, Vinod
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 81 - 83
  • [49] SEGMENTATION OF THE BLADDER WALL USING COUPLED LEVEL SET METHODS
    Chi, J. Wenjun
    Brady, Sir Michael
    Moore, Niall R.
    Schnabel, Julia A.
    [J]. 2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1653 - 1656
  • [50] An elliptical level set method for automatic TRUS prostate image segmentation
    Kachouie, Nezamoddin N.
    Fieguth, Paul
    Rahnamayan, Shahryar
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2006, : 191 - +