Improved Removal of Cr(VI) using Fe3O4/C Magnetic Nanocomposites Derived from Potassium Fulvic Acid

被引:7
|
作者
Su, Qiaohong [1 ,2 ]
Lin, Zhang [2 ]
Tian, Chen [2 ]
Su, Xintai [2 ]
Xue, Xiaogang [3 ]
Su, Zhi [1 ]
机构
[1] Xinjiang Normal Univ, Coll Chem & Chem Engn, Urumqi 830054, Xinjianq, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, Key Lab Pollut Control & Ecosyst Restorat Ind Clu, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Peoples R China
来源
CHEMISTRYSELECT | 2019年 / 4卷 / 46期
基金
中国国家自然科学基金;
关键词
Adsorption; Cr(VI); Iron oxide; Potassium fulvic acid (FA-K); HEXAVALENT CHROMIUM; EFFICIENT REMOVAL; ACTIVATED CARBON; AQUEOUS-SOLUTIONS; HIGHLY EFFICIENT; FACILE SYNTHESIS; CONGO RED; ADSORPTION; ADSORBENT; WATER;
D O I
10.1002/slct.201903972
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of high performance magnetic nanomaterials has a good application prospect in wastewater treatment. Herein, Fe3O4/C nanocomposites was synthesized by ecofriendly hydrolysis-calcination method using potassium fulvic acid (FA-K) and FeCl3 center dot 6H(2)O as raw materials. The morphology of Fe3O4/C nanocomposites exhibited a loose pore structure with uniform size (a diameter similar to 27 nm). The prepared Fe3O4/C nanocomposites possessed excellent dispersibility and magnetic properties in aqueous solution. The removal efficiency and maximum adsorption capacity of Fe3O4/C nanocomposites were 98% and 64.0 mg g(-1), respectively. Moreover, it was confirmed that the adsorption mechanism of Cr(VI) contains electrostatic attraction and redox reaction. In this work, we provide a convenient means for manufacturing Fe3O4/C nanocomposites, and prove that FA-K is a cheap carbon source for manufacturing Fe3O4/C nanocomposites, which makes Fe3O4/C nanocomposites have potential application value in the effective adsorption of Cr(VI).
引用
收藏
页码:13656 / 13662
页数:7
相关论文
共 50 条
  • [11] Rapid removal of aqueous Cr(VI) and the removal mechanism using ZVI/Fe3O4/Fe2+ system
    Zhang, Long
    Fu, Fenglian
    Ding, Zecong
    Pang, Jiabin
    DESALINATION AND WATER TREATMENT, 2017, 85 : 313 - 319
  • [12] The Efficiency Adsorption of Ammonia Nitrogen, Phosphate and Basic Blue 3 by Fulvic Acid Decorated Fe3O4 Magnetic Nanocomposites
    Wang, Min
    Zheng, Yuming
    Li, Qiang
    Qi, Yizhuo
    Liao, Xuan
    Fu, Qingchun
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2021, 30 (04): : 3299 - 3305
  • [13] Design of three-dimensional macroporous reduced graphene oxide–Fe3O4 nanocomposites for the removal of Cr(VI) from wastewater
    Yurong Liu
    Zongqiang Zhang
    Xiangwei Sun
    Tianyu Wang
    Journal of Porous Materials, 2019, 26 : 109 - 119
  • [14] Evaluation of Cr(VI) Removal from Tanning Effluents Using Magnetic Nanoparticles of Fe3O4 Synthesized with Olea europaea Bone Extract
    Bejarano-Meza, Maria
    Deza-Carrasco, Fabricio Eduardo
    Salinas-Herrera, Sofia
    Flores-Calla, Susan
    Jimenez-Pacheco, Hugo Guillermo
    MOLECULES, 2024, 29 (02):
  • [15] Improved Cr (VI) adsorption performance in wastewater and groundwater by synthesized magnetic adsorbent derived from Fe3O4 loaded corn straw biochar
    Chu, Thi Thu Hien
    Nguyen, Minh Viet
    ENVIRONMENTAL RESEARCH, 2023, 216
  • [16] The efficient adsorption removal of Cr(VI) by using Fe3O4 nanoparticles hybridized with carbonaceous materials
    Gao, Hongtao
    Lv, Shuang
    Dou, Jinbiao
    Kong, Miaomiao
    Dai, Dongmei
    Si, Chongdian
    Liu, Guangjun
    RSC ADVANCES, 2015, 5 (74) : 60033 - 60040
  • [17] Effects of fulvic acid on aggregation, sedimentation, and adsorption of Fe3O4 magnetic nanoparticles
    Zhao, Tianhui
    Fang, Mengyuan
    Tang, Zhi
    Zhao, Xiaoli
    Xie, Fazhi
    Wu, Fengchang
    Giesy, John P.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (21) : 21463 - 21474
  • [18] Synthesis of Fe3O4 nanoparticles with tunable sizes for the removal of Cr(VI) from aqueous solution
    Yibing Feng
    Yi Du
    Zhongtao Chen
    Minxing Du
    Kai Yang
    Xingjie Lv
    Zhongfu Li
    Journal of Coatings Technology and Research, 2018, 15 : 1145 - 1155
  • [19] Effects of fulvic acid on aggregation, sedimentation, and adsorption of Fe3O4 magnetic nanoparticles
    Tianhui Zhao
    Mengyuan Fang
    Zhi Tang
    Xiaoli Zhao
    Fazhi Xie
    Fengchang Wu
    John P. Giesy
    Environmental Science and Pollution Research, 2019, 26 : 21463 - 21474
  • [20] Synthesis of Fe3O4 nanoparticles with tunable sizes for the removal of Cr(VI) from aqueous solution
    Feng, Yibing
    Du, Yi
    Chen, Zhongtao
    Du, Minxing
    Yang, Kai
    Lv, Xingjie
    Li, Zhongfu
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2018, 15 (05) : 1145 - 1155