Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process

被引:142
|
作者
Lin, Chia-Ying [1 ]
Wirtz, Tobias
LaMarca, Frank
Hollister, Scott J.
机构
[1] Univ Michigan, Dept Neurosurg, Spine Res Lab, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Scaffold Tissue Engn Grp, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Fraunhofer Inst Laser Technol, Aachen, Germany
[5] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Surg, Ann Arbor, MI 48109 USA
关键词
interbody fusion cage; topology optimization; titanium alloy; selective laser melting; porous tantalum;
D O I
10.1002/jbm.a.31231
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A topology optimized lumbar interbody fusion cage was made of Ti-A16-V4 alloy by the rapid prototyping process of selective laser melting (SLM) to reproduce designed microstructure features. Radiographic characterizations and the mechanical properties were investigated to determine how the structural characteristics of the fabricated cage were reproduced from design characteristics using micro-computed tomography scanning. The mechanical modulus of the designed cage was also measured to compare with tantalum, a widely used porous metal. The designed microstructures can be clearly seen in the micrographs of the micro-CT and scanning electron microscopy examinations, showing the SLM process can reproduce intricate microscopic features from the original designs. No imaging artifacts from micro-CT were found. The average compressive modulus of the tested caged was 2.97 +/- 0.90 GPa, which is comparable with the reported porous tantalum modulus of 3 GPa and falls between that of cortical bone (15 GPa) and trabecular bone (0.1-0.5 GPa). The new porous Ti-6A14V optimal-structure cage fabricated by SLM process gave consistent mechanical properties without artifactual distortion in the imaging modalities and thus it can be a promising alternative as a porous implant for spine fusion. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:272 / 279
页数:8
相关论文
共 50 条
  • [31] Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting
    Amato, K. N.
    Gaytan, S. M.
    Murr, L. E.
    Martinez, E.
    Shindo, P. W.
    Hernandez, J.
    Collins, S.
    Medina, F.
    ACTA MATERIALIA, 2012, 60 (05) : 2229 - 2239
  • [32] Process gas influence on microstructure and mechanical behavior of Inconel 718 fabricated via selective laser melting
    Bean, Glenn E.
    Witkin, David B.
    McLouth, Tait D.
    Zaldivar, Rafael J.
    PROGRESS IN ADDITIVE MANUFACTURING, 2020, 5 (04) : 405 - 417
  • [33] Microstructure and mechanical properties of AlCoCrFeMnNi HEAs fabricated by selective laser melting
    Ma, Pan
    Fang, Yacheng
    Wei, Shuimiao
    Zhang, Zhiyu
    Yang, Hong
    Wan, Shiguang
    Prashanth, Konda Gokuldoss
    Jia, Yandong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 7090 - 7100
  • [34] Mechanical Properties and Fracture of Austenitic Steel Fabricated by Selective Laser Melting
    M. V. Gerov
    A. G. Kolmakov
    D. V. Prosvirnin
    A. O. Kayasova
    N. S. Zhdanova
    M. E. Prutskov
    Russian Metallurgy (Metally), 2022, 2022 : 1218 - 1226
  • [35] Microstructure characterization of cemented carbide fabricated by selective laser melting process
    Li, Chen-Wei
    Chang, Kai-Chun
    Yeh, An-Chou
    Yeh, Jien-Wei
    Lin, Su-Jien
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2018, 75 : 225 - 233
  • [36] Experimental evaluation of selective laser melting process for optimized lattice structures
    De Pasquale, G.
    Luceri, F.
    Riccio, M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2019, 233 (04) : 763 - 775
  • [37] Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: Design, manufacturing and characterization
    Zhang, L.
    Song, B.
    Fu, J. J.
    Wei, S. S.
    Yang, L.
    Yan, C. Z.
    Li, H.
    Gao, L.
    Shi, Y. S.
    JOURNAL OF MANUFACTURING PROCESSES, 2020, 56 : 1166 - 1177
  • [38] Mechanical Properties of Porous Ti-6Al-4V Titanium Alloys Fabricated by Selective Laser Melting
    Qing, Li
    Zhao Guorui
    Yan Xingchen
    Ma Wenyou
    Yu Hongya
    Min, Liu
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (01)
  • [39] Manufacture by selective laser melting and mechanical behavior of commercially pure titanium
    Attar, H.
    Calin, M.
    Zhang, L. C.
    Scudino, S.
    Eckert, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 593 : 170 - 177
  • [40] Evaluation of topology-optimized lattice structures manufactured via selective laser melting
    Xiao, Zefeng
    Yang, Yongqiang
    Xiao, Ran
    Bai, Yuchao
    Song, Changhui
    Wang, Di
    MATERIALS & DESIGN, 2018, 143 : 27 - 37