A Bayesian nonlinearity test for threshold moving average models

被引:13
|
作者
Xia, Qiang
Pan, Jiazhu [2 ]
Zhang, Zhiqiang [3 ]
Liu, Jinshan [1 ]
机构
[1] S China Agr Univ, Dept Math, Guangzhou 510642, Guangdong, Peoples R China
[2] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland
[3] E China Normal Univ, Shanghai, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inference; MA models; Gibbs sampler; Metropolis-Hastings algorithm; RJMCMC methods; TMA models; HYDROMETEOROLOGICAL TIME-SERIES; CHANGE-POINT ANALYSIS; INFERENCE;
D O I
10.1111/j.1467-9892.2010.00667.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a Bayesian test for nonlinearity of threshold moving average (TMA) models. First, we obtain the marginal posterior densities of all parameters, including the threshold and delay, of the TMA model using Gibbs sampler with the Metropolis-Hastings algorithm. And then, we adopt reversible-jump Markov chain Monte Carlo methods to calculate the posterior probabilities for MA and TMA models. Posterior evidence in favour of the TMA model indicates threshold nonlinearity. Simulation experiments and a real example show that our method works very well in distinguishing MA and TMA models.
引用
收藏
页码:329 / 336
页数:8
相关论文
共 50 条