Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots

被引:159
|
作者
Hess, H. [1 ]
Ross, Jennifer L. [2 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
PLUS-END-TRACKING; KINESIN-BASED TRANSPORT; ALPHA-BETA-TUBULIN; DYNAMIC INSTABILITY; FLEXURAL RIGIDITY; SELF-ORGANIZATION; BIOMOLECULAR MOTOR; ACTIVE-TRANSPORT; INTRAFLAGELLAR TRANSPORT; STRUCTURAL TRANSITIONS;
D O I
10.1039/c7cs00030h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
引用
收藏
页码:5570 / 5587
页数:18
相关论文
共 50 条
  • [31] Exploiting non-equilibrium phase separation for self-assembly
    Gruenwald, Michael
    Tricard, Simon
    Whitesides, George M.
    Geissler, Phillip L.
    SOFT MATTER, 2016, 12 (05) : 1517 - 1524
  • [32] USE OF NON-EQUILIBRIUM THERMODYNAMICS FOR THE DESCRIPTION OF CHEMICAL CONVERSIONS
    KRYLOV, AF
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 1981, 24 (03): : 309 - 312
  • [33] Droplet size regulation by non-equilibrium chemical reactions
    Kirschbaum, J.
    Zwicker, D.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2019, 48 : S119 - S119
  • [34] A chemical non-equilibrium model of an air supersonic ICP
    El Morsli, Mbark
    Proulx, Pierre
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (02) : 380 - 394
  • [35] Non-Equilibrium Reaction Rates in Chemical Kinetic Equations
    Gorbachev, Yuriy
    EIGHTH POLYAKHOV'S READING, 2018, 1959
  • [36] Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures
    Singh, Dhruv P.
    Choudhury, Udit
    Fischer, Peer
    Mark, Andrew G.
    ADVANCED MATERIALS, 2017, 29 (32)
  • [37] Current Status of Non-equilibrium Superconducting Detectors for Photons and Molecules
    Ohkubo, Masataka
    LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 : 381 - 388
  • [38] Non-equilibrium steady-state colloidal assembly dynamics
    Coughlan, Anna C. H.
    Torres-Diaz, Isaac
    Zhang, Jianli
    Bevan, Michael A.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (20):
  • [40] Non-equilibrium Quasi-Chemical Nucleation Model
    Gorbachev, Yuriy E.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 171 (02) : 288 - 344