BHP Iron Ore initiated a program in January, 1995 at their Mt. Whaleback operation in Newman, Western Australia to develop a decommissioning plan for the waste rock material. The primary research program includes the development of technology for the long term performance of the waste rock dumps with respect to vegetation, slope stability, surface runoff, erosion, and water infiltration. This paper evaluates field performance of cover systems constructed on a horizontal and a sloped waste rock surface. The cover system is constructed using suitable run-of-mine waste material to minimize closure costs. The moisture is subsequently released to the atmosphere as evapotranspiration. Rainfall entering the waste material is buffered due to the presence of the cover material thereby significantly reducing net percolation to the underlying waste rock The objective is to control acid rock drainage by preventing moisture movement into and through the waste rock material. Two years of field data are presented to illustrate low percolation rates to the underlying waste rock and key performance characteristics of the moisture store and release cover system design. Field data collected to date demonstrates that a moisture store and release cover system constructed with suitable run-of-mine waste material has good potential as a final acid rock drainage control cover system at the Mt. Whaleback site. The performance of the cover system on a sloped surface was significantly altered as compared to placing the cover system on a horizontal surface.