Derivation of Canine Induced Pluripotent Stem Cells

被引:39
|
作者
Baird, A. E. G. [1 ]
Barsby, T. [1 ]
Guest, D. J. [1 ]
机构
[1] Anim Hlth Trust, Newmarket CB8 7UU, Suffolk, England
关键词
X-CHROMOSOME INACTIVATION; IN-VITRO; DEFINED FACTORS; SOMATIC-CELLS; ESTABLISHMENT; GENERATION; LINES; FIBROBLASTS; DIFFERENCE; INDUCTION;
D O I
10.1111/rda.12562
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Contents Dogs and humans have many inherited genetic diseases in common and conditions that are increasingly prevalent in humans also occur naturally in dogs. The use of dogs for the experimental and clinical testing of stem cell and regenerative medicine products would benefit canine health and welfare and provide relevant animal models for the translation of therapies to the human field. Induced pluripotent stem cells (iPSCs) have the capacity to turn into all cells of the body and therefore have the potential to provide cells for therapeutic use and for disease modelling. The objective of this study was to derive and characterize iPSCs from karyotypically abnormal adult canine cells. Aneuploid adipose-derived mesenchymal stromal cells (AdMSCs) from an adult female Weimeraner were re-programmed into iPSCs via overexpression of four human pluripotency factors (Oct 4, Sox2, Klf4 and c-myc) using retroviral vectors. The iPSCs showed similarity to human ESCs with regard to morphology, pluripotency marker expression and the ability to differentiate into derivatives of all three germ layers invitro (endoderm, ectoderm and mesoderm). The iPSCs also demonstrated silencing of the viral transgenes and re-activation of the silent X chromosome, suggesting full reprogramming had occurred. The levels of aneuploidy observed in the AdMSCs were maintained in the iPSCs. This finding demonstrates the potential for generating canine induced pluripotent stem cells for use as disease models in addition to regenerative medicine and pharmaceutical testing.
引用
收藏
页码:669 / 676
页数:8
相关论文
共 50 条
  • [41] Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells
    Sun, Ning
    Panetta, Nicholas J.
    Gupta, Deepak M.
    Wilson, Kitchener D.
    Lee, Andrew
    Jia, Fangjun
    Hu, Shijun
    Cherry, Athena M.
    Robbins, Robert C.
    Longaker, Michael T.
    Wu, Joseph C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (37) : 15720 - 15725
  • [42] Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells
    Naylor, Richard W.
    McGhee, Charles N. J.
    Cowan, Chad A.
    Davidson, Alan J.
    Holm, Teresa M.
    Sherwin, Trevor
    PLOS ONE, 2016, 11 (10):
  • [43] Derivation of transplantable human thyroid follicular epithelial cells from induced pluripotent stem cells
    Undeutsch, Hendrik J.
    Posabella, Alberto
    Alber, Andrea B.
    Bawa, Pushpinder S.
    Villacorta-Martin, Carlos
    Wang, Feiya
    Ikonomou, Laertis
    Kotton, Darrell N.
    Hollenberg, Anthony N.
    STEM CELL REPORTS, 2024, 19 (12): : 1690 - 1705
  • [44] Epigenetic rejuvenation of human mesenchymal stromal cells by derivation from induced pluripotent stem cells
    Frobel, J.
    Hemeda, H.
    Lenz, M.
    Denecke, B.
    Saric, T.
    Zenke, M.
    Wagner, W.
    ONCOLOGY RESEARCH AND TREATMENT, 2014, 37 : 304 - 305
  • [45] Chromatin structure of pluripotent stem cells and induced pluripotent stem cells
    Delgado-Olguin, Paul
    Recillas-Targa, Felix
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2011, 10 (01) : 37 - 49
  • [46] Induced pluripotent stem cells are induced pluripotent stem cell-like cells
    Liting Song
    Emanuel Goldman
    The Journal of Biomedical Research, 2015, 29 (01) : 1 - 2
  • [47] Induced pluripotent stem cells are induced pluripotent stem cell-like cells
    Song, Liting
    Goldman, Emanuel
    JOURNAL OF BIOMEDICAL RESEARCH, 2015, 29 (01): : 1 - 2
  • [48] DERIVATION OF HUMAN TROPHOBLAST STEM CELLS FROM HUMAN PLURIPOTENT STEM CELLS
    Mischler, Adam
    Karakis, Victoria
    San Miguel, Adriana
    Rao, Balaji
    PLACENTA, 2019, 83 : E59 - E59
  • [49] Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells
    Hawkins, Finn J.
    Suzuki, Shingo
    Beermann, Mary Lou
    Barilla, Cristina
    Wang, Ruobing
    Villacorta-Martin, Carlos
    Berical, Andrew
    Jean, J. C.
    Le Suer, Jake
    Matte, Taylor
    Simone-Roach, Chantelle
    Tang, Yang
    Schlaeger, Thorsten M.
    Crane, Ana M.
    Matthias, Nadine
    Huang, Sarah X. L.
    Randell, Scott H.
    Wu, Joshua
    Spence, Jason R.
    Carraro, Gianni
    Stripp, Barry R.
    Rab, Andras
    Sorsher, Eric J.
    Horani, Amjad
    Brody, Steven L.
    Davis, Brian R.
    Kotton, Darrell N.
    CELL STEM CELL, 2021, 28 (01) : 79 - +
  • [50] Derivation of trophoblast stem cells from naive human pluripotent stem cells
    Dong, Chen
    Beltcheva, Mariana
    Gontarz, Paul
    Zhang, Bo
    Popli, Pooja
    Fischer, Laura A.
    Khan, Shafqat A.
    Park, Kyoung-mi
    Yoon, Eun-Ja
    Xing, Xiaoyun
    Kommagani, Ramakrishna
    Wang, Ting
    Solnica-Krezel, Lilianna
    Theunissen, Thorold W.
    ELIFE, 2020, 9