The L2-torsion function and the Thurston norm of 3-manifolds

被引:3
|
作者
Friedl, Stefan [1 ]
Lueck, Wolfgang [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
L-2-Betti numbers; L-2-torsion; twisting with finite-dimensional representations; Thurston norm; L-2-ALEXANDER INVARIANT; TORSION; MANIFOLDS; L-2-INVARIANTS; APPROXIMATION; L(2)-TORSION;
D O I
10.4171/CMH/453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an oriented irreducible 3-manifold with infinite fundamental group and empty or toroidal boundary which is not S(1)x D-2. Consider any element phi in the first cohomology of M with integer coefficients. Then one can define the phi-twisted L-2-torsion function of the universal covering which is a function from the set of positive real numbers to the set of real numbers. By earlier work of the second author and Schick the evaluation at t = 1 determines the volume. In this paper we show that the degree of the L-2-torsion function, which is a number extracted from its asymptotic behavior at 0 and at infinity, agrees with the Thurston norm of phi.
引用
收藏
页码:21 / 52
页数:32
相关论文
共 50 条
  • [21] Degree of -Alexander torsion for 3-manifolds
    Liu, Yi
    INVENTIONES MATHEMATICAE, 2017, 207 (03) : 981 - 1030
  • [22] GENERALIZED TORSION AND DECOMPOSITION OF 3-MANIFOLDS
    Ito, Tetsuya
    Motegi, Kimihiko
    Teragaito, Masakazu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (11) : 4999 - 5008
  • [23] Thurston’s Vision and the Virtual Fibering Theorem for 3-Manifolds
    Friedl S.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2014, 116 (4) : 223 - 241
  • [24] TWISTED L2-TORSION ON THE CHARACTER VARIETY
    Benard, Leo
    Raimbault, Jean
    PUBLICACIONS MATEMATIQUES, 2022, 66 (02) : 857 - 881
  • [25] On the existence of extremal metrics for L2-norm of scalar curvature on closed 3-manifolds
    Chang, SC
    Wu, JT
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (03): : 435 - 454
  • [26] THE L2-TORSION POLYTOPE OF AMENABLE GROUPS
    Funke, Florian
    DOCUMENTA MATHEMATICA, 2018, 23 : 1969 - 1993
  • [27] Hidden torsion, 3-manifolds, and homology cobordism
    Cha, Jae Choon
    Orr, Kent E.
    JOURNAL OF TOPOLOGY, 2013, 6 (02) : 490 - 512
  • [28] PRESCRIBED VIRTUAL HOMOLOGICAL TORSION OF 3-MANIFOLDS
    Chu, Michelle
    Groves, Daniel
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (06) : 2931 - 2941
  • [29] Exponential Torsion Growth for Random 3-Manifolds
    Baik, Hyungryul
    Bauer, David
    Gekhtman, Ilya
    Hamenstaedt, Ursula
    Hensel, Sebastian
    Kastenholz, Thorben
    Petri, Bram
    Valenzuela, Daniel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (21) : 6497 - 6534
  • [30] L(2)-TOPOLOGICAL INVARIANTS OF 3-MANIFOLDS
    LOTT, J
    LUCK, W
    INVENTIONES MATHEMATICAE, 1995, 120 (01) : 15 - 60