The L2-torsion function and the Thurston norm of 3-manifolds

被引:3
|
作者
Friedl, Stefan [1 ]
Lueck, Wolfgang [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
L-2-Betti numbers; L-2-torsion; twisting with finite-dimensional representations; Thurston norm; L-2-ALEXANDER INVARIANT; TORSION; MANIFOLDS; L-2-INVARIANTS; APPROXIMATION; L(2)-TORSION;
D O I
10.4171/CMH/453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an oriented irreducible 3-manifold with infinite fundamental group and empty or toroidal boundary which is not S(1)x D-2. Consider any element phi in the first cohomology of M with integer coefficients. Then one can define the phi-twisted L-2-torsion function of the universal covering which is a function from the set of positive real numbers to the set of real numbers. By earlier work of the second author and Schick the evaluation at t = 1 determines the volume. In this paper we show that the degree of the L-2-torsion function, which is a number extracted from its asymptotic behavior at 0 and at infinity, agrees with the Thurston norm of phi.
引用
收藏
页码:21 / 52
页数:32
相关论文
共 50 条
  • [1] Universal L2-torsion, polytopes and applications to 3-manifolds
    Friedl, Stefan
    Lueck, Wolfgang
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 1114 - 1151
  • [2] Z2-Thurston norm and complexity of 3-manifolds
    Jaco, William
    Rubinstein, J. Hyam
    Tillmann, Stephan
    MATHEMATISCHE ANNALEN, 2013, 356 (01) : 1 - 22
  • [3] L2-torsion of hyperbolic manifolds
    Eckehard Hess
    Thomas Schick
    manuscripta mathematica, 1998, 97 : 329 - 334
  • [4] L2-torsion of hyperbolic manifolds
    Hess, E
    Schick, T
    MANUSCRIPTA MATHEMATICA, 1998, 97 (03) : 329 - 334
  • [5] The dual Thurston norm and the geometry of closed 3-manifolds
    Itoh, Mitsuhiro
    Yamase, Takahisa
    OSAKA JOURNAL OF MATHEMATICS, 2006, 43 (01) : 121 - 129
  • [6] Z2-Thurston norm and complexity of 3-manifolds, II
    Jaco, William
    Rubinstein, J. Hyam
    Spreer, Jonathan
    Tillmann, Stephan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (01): : 503 - 529
  • [7] L2-torsion of hyperbolic manifolds of finite volume
    Lück, W
    Schick, T
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) : 518 - 567
  • [8] The L2-Alexander torsion of 3-manifolds
    Dubois, Jerome
    Friedl, Stefan
    Lueck, Wolfgang
    JOURNAL OF TOPOLOGY, 2016, 9 (03) : 889 - 926
  • [9] ANALYTIC TORSION AND L2-TORSION OF COMPACT LOCALLY SYMMETRIC MANIFOLDS
    Mueller, Werner
    Pfaff, Jonathan
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2013, 95 (01) : 71 - 119
  • [10] Twisted Reidemeister torsion, the Thurston norm and fibered manifolds
    Stefan Friedl
    Geometriae Dedicata, 2014, 172 : 135 - 145