Phase Transitions for the Cavity Approach to the Clique Problem on Random Graphs

被引:7
|
作者
Gaudilliere, Alexandre [2 ]
Scoppola, Benedetto [3 ]
Scoppola, Elisabetta [1 ]
Viale, Massimiliano [4 ]
机构
[1] Univ Rome Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Aix Marseille 1, CNRS, LATP, F-13013 Marseille, France
[3] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
Phase transitions; Disordered systems; Random graphs; Cliques; Probabilistic cellular automaton;
D O I
10.1007/s10955-011-0336-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a rigorous proof of two phase transitions for a disordered statistical mechanics system used to define an algorithm to find large cliques inside Erdos random graphs. Such a system is a conservative probabilistic cellular automaton inspired by the cavity method originally introduced in spin glass theory.
引用
收藏
页码:1127 / 1155
页数:29
相关论文
共 50 条
  • [31] The Maximum Clique Problem for Permutation Hamming Graphs
    János Barta
    Roberto Montemanni
    [J]. Journal of Optimization Theory and Applications, 2022, 194 : 492 - 507
  • [32] Solving the Maximal Clique Problem on Compressed Graphs
    Bernard, Jocelyn
    Seba, Hamida
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2018), 2018, 11177 : 45 - 55
  • [33] The Maximum Clique Problem in Multiple Interval Graphs
    Francis, Mathew C.
    Goncalves, Daniel
    Ochem, Pascal
    [J]. ALGORITHMICA, 2015, 71 (04) : 812 - 836
  • [34] The Maximum Clique Problem in Multiple Interval Graphs
    Mathew C. Francis
    Daniel Gonçalves
    Pascal Ochem
    [J]. Algorithmica, 2015, 71 : 812 - 836
  • [35] On CLIQUE Problem for Sparse Graphs of Large Dimension
    Bykova, Valentina
    Illarionov, Roman
    [J]. INFORMATION TECHNOLOGIES AND MATHEMATICAL MODELLING, 2014, 487 : 69 - 75
  • [36] A generalization of chordal graphs and the maximum clique problem
    Chmeiss, A
    Jegou, P
    [J]. INFORMATION PROCESSING LETTERS, 1997, 62 (02) : 61 - 66
  • [37] The Maximum Clique Problem for Permutation Hamming Graphs
    Barta, Janos
    Montemanni, Roberto
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (02) : 492 - 507
  • [38] The clique problem in intersection graphs of ellipses and triangles
    Ambühl, C
    Wagner, U
    [J]. THEORY OF COMPUTING SYSTEMS, 2005, 38 (03) : 279 - 292
  • [39] The Clique Problem in Intersection Graphs of Ellipses and Triangles
    Christoph Ambühl
    Uli Wagner
    [J]. Theory of Computing Systems, 2005, 38 : 279 - 292
  • [40] On the clique partitioning problem in weighted interval graphs
    Myung, Young-Soo
    [J]. THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 290 - 293