A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation

被引:87
|
作者
Boubendir, Y. [1 ,2 ]
Antoine, X. [3 ]
Geuzaine, C. [4 ]
机构
[1] Univ Heights, Dept Math Sci, Newark, NJ 07102 USA
[2] Univ Heights, NJIT, Ctr Appl Math & Stat, Newark, NJ 07102 USA
[3] Nancy Univ, INRIA Corida Team, IECN, F-54506 Vandoeuvre Les Nancy, France
[4] Univ Liege, Dept Elect Engn & Comp Sci, Inst Montefiore, B-4000 Liege, Belgium
基金
美国国家科学基金会;
关键词
Helmholtz equation; Domain decomposition methods; Finite elements; Pade approximants; PERFECTLY MATCHED LAYER; FINITE-ELEMENT METHODS; ITERATIVE SOLUTION; BOUNDARY-CONDITIONS; INTEGRAL-EQUATIONS;
D O I
10.1016/j.jcp.2011.08.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a new non-overlapping domain decomposition method for the Helmholtz equation, whose effective convergence is quasi-optimal. These improved properties result from a combination of an appropriate choice of transmission conditions and a suitable approximation of the Dirichlet to Neumann operator. A convergence theorem of the algorithm is established and numerical results validating the new approach are presented in both two and three dimensions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:262 / 280
页数:19
相关论文
共 50 条
  • [31] Convergence of parallel overlapping domain decomposition methods for the Helmholtz equation
    Shihua Gong
    Martin J. Gander
    Ivan G. Graham
    David Lafontaine
    Euan A. Spence
    [J]. Numerische Mathematik, 2022, 152 : 259 - 306
  • [32] Convergence of parallel overlapping domain decomposition methods for the Helmholtz equation
    Gong, Shihua
    Gander, Martin J.
    Graham, Ivan G.
    Lafontaine, David
    Spence, Euan A.
    [J]. NUMERISCHE MATHEMATIK, 2022, 152 (02) : 259 - 306
  • [33] A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations
    El Bouajaji, M.
    Thierry, B.
    Antoine, X.
    Geuzaine, C.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 : 38 - 57
  • [34] A NON-OVERLAPPING DOMAIN DECOMPOSITION ALGORITHM BASED ON THE NATURAL BOUNDARY REDUCTION FOR WAVE EQUATIONS IN AN UNBOUNDED DOMAIN
    杜其奎
    张明新
    [J]. Numerical Mathematics(Theory,Methods and Applications), 2004, (02) : 121 - 132
  • [35] Analysis of non-overlapping domain decomposition algorithms with inexact solves
    Bramble, JH
    Pasciak, JE
    Vassilev, AT
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 1 - 19
  • [36] OBDD: Overlapping Balancing Domain Decomposition Methods and Generalizations to the Helmholtz Equation
    Kimn, Jung-Han
    Sarkis, Marcus
    [J]. Lecture Notes in Computational Science and Engineering, 2007, 55 : 317 - 324
  • [37] Improved interface conditions for a non-overlapping domain decomposition of a non-convex polygonal domain
    Chniti, Chokri
    Nataf, Frederic
    Nier, Francis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (11) : 883 - 886
  • [38] A non-overlapping domain decomposition method for the advection-diffusion problem
    Lube, G
    Müller, L
    Otto, FC
    [J]. COMPUTING, 2000, 64 (01) : 49 - 68
  • [39] Accelerated Non-Overlapping Domain Decomposition Method for Total Variation Minimization
    Li, Xue
    Zhang, Zhenwei
    Chang, Huibin
    Duan, Yuping
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (04) : 1017 - 1041
  • [40] Convergent Non-overlapping Domain Decomposition Methods for Variational Image Segmentation
    Duan, Yuping
    Chang, Huibin
    Tai, Xue-Cheng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (02) : 532 - 555