A Liouville theorem for a class of fractional systems in R+n

被引:14
|
作者
Zhang, Lizhi [1 ]
Yu, Mei [1 ]
He, Jianming [2 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
[2] China Acad Informat & Communt Technol, Inst Technol & Stand, Beijing 100191, Peoples R China
关键词
The fractional Laplacian; Liouville theorem; Narrow region principle; Decay at infinity; A direct method of moving planes; EQUATIONS; UNIQUENESS; LAPLACIAN; RN; CLASSIFICATION;
D O I
10.1016/j.jde.2017.07.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < alpha, beta < 2 be any real number. In this paper, we investigate a class of fractional elliptic systems of the form { (-Delta)(alpha/2)u(x) = f (v(x)), (-Delta)(beta/2)v(x) = g(u(x)), x is an element of R-+(n), u,v equivalent to 0, x is not an element of R-+(n). Applying the iteration method and the direct method of moving planes for the fractional Laplacian, without any decay assumption on the solutions at infinity, we prove the Lionville theorem of nonnegative solutions under some natural conditions on f and g. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:6025 / 6065
页数:41
相关论文
共 50 条
  • [21] Liouville theorem for fractional Henon-Lane-Emden systems on a half space
    Le, Phuong
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 3060 - 3073
  • [22] LIOUVILLE TYPE THEOREM FOR FRACTIONAL LAPLACIAN SYSTEM
    Wang, Xinjing
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (11) : 5253 - 5268
  • [23] LIOUVILLE'S THEOREM FOR A FRACTIONAL ELLIPTIC SYSTEM
    Wang, Pengyan
    Niu, Pengcheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1545 - 1558
  • [24] PROPERTY OF SOLUTIONS FOR ELLIPTIC EQUATION INVOLVING THE HIGHER-ORDER FRACTIONAL LAPLACIAN IN R+n
    Yu, Mei
    Zhang, Xia
    Zhang, Binlin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3597 - 3612
  • [25] Uniform persistence and Hopf bifurcations in R+n
    Giraldo, Antonio
    Laguna, Victor F.
    Sanjurjo, Jose M. R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2949 - 2964
  • [26] On Liouville Type Theorem for the Steady Fractional Navier-Stokes Equations in R3
    Yang, Jiaqi
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [27] ON THE BOUUNDEDNESS OF FRACTIONAL B-MAXIMAL OPERATORS IN THE LORENTZ SPACES Lp,q,γ&gt;(R+n)
    Aykol, Canay
    Serbetci, Ayhan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (02): : 27 - 38
  • [28] A Liouville type theorem for a class of anisotropic equations
    Barbu, L.
    Enache, C.
    Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, 2016, 24 (03): : 47 - 59
  • [29] A Liouville theorem for the fractional Ginzburg-Landau equation
    Li, Yayun
    Chen, Qinghua
    Lei, Yutian
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (06) : 727 - 731
  • [30] A nonlinear Liouville theorem for fractional equations in the Heisenberg group
    Cinti, Eleonora
    Tan, Jinggang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 434 - 454