Optimal Screening in Structured SIR Epidemics

被引:13
|
作者
Ainseba, B. [2 ]
Iannelli, M. [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Povo, Trento, Italy
[2] Univ Bordeaux Segalen, Bordeaux Univ, Inst Math Bordeaux, UMR CNRS 5251, F-33076 Bordeaux, France
关键词
PDE in connection with biology; population dynamics; epidemiology; optimal control problems involving partial differential equations; VACCINATION STRATEGIES; POPULATION-DYNAMICS; AGE-STRUCTURE; MODEL; DISEASES; TRANSMISSION; IMPACT; PULSE;
D O I
10.1051/mmnp/20127302
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a model for describing the spread of an infectious disease with public screening measures to control the spread. We want to address the problem of determining an optimal screening strategy for a disease characterized by appreciable duration of the infectiveness period and by variability of the transmission risk. The specific disease we have in mind is the HIV infection. However the model will apply to a disease for which class-age structure is significant and should not be disregarded.
引用
收藏
页码:12 / 27
页数:16
相关论文
共 50 条
  • [21] Stochastic SIR epidemics in a population with households and schools
    Tanneke Ouboter
    Ronald Meester
    Pieter Trapman
    Journal of Mathematical Biology, 2016, 72 : 1177 - 1193
  • [22] Exact Equations for SIR Epidemics on Tree Graphs
    K. J. Sharkey
    I. Z. Kiss
    R. R. Wilkinson
    P. L. Simon
    Bulletin of Mathematical Biology, 2015, 77 : 614 - 645
  • [23] An Application of the SIR Model to the Evolution of Epidemics in Portugal
    Correia, Antonio M.
    Mena, Filipe C.
    Soares, Ana J.
    DYNAMICS, GAMES AND SCIENCE II, 2011, 2 : 247 - +
  • [24] Solution of the SIR models of epidemics using MSGDTM
    Freihat, Asad A.
    Handam, Ali H.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 622 - 636
  • [25] Effects of population mixing on the spread of SIR epidemics
    H. Fukś
    A. T. Lawniczak
    R. Duchesne
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 50 : 209 - 214
  • [26] Estimation and Distributed Eradication of SIR Epidemics on Networks
    Zhang, Ciyuan
    Leung, Humphrey
    Butler, Brooks A.
    Pare, Philip E.
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (02): : 756 - 768
  • [27] Exact Equations for SIR Epidemics on Tree Graphs
    Sharkey, K. J.
    Kiss, I. Z.
    Wilkinson, R. R.
    Simon, P. L.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (04) : 614 - 645
  • [28] SIR epidemics and vaccination on random graphs with clustering
    Fransson, Carolina
    Trapman, Pieter
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (07) : 2369 - 2398
  • [29] Solutions of the SIR models of epidemics using HAM
    Awawdeh, Fadi
    Adawi, A.
    Mustafa, Z.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3047 - 3052
  • [30] SIR epidemics on random graphs with a fixed degree sequence
    Bohman, Tom
    Picollelli, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (02) : 179 - 214