A scalable architecture for quantum computation with molecular nanomagnets

被引:82
|
作者
Jenkins, M. D. [1 ,2 ,3 ,7 ]
Zueco, D. [1 ,2 ,3 ,4 ]
Roubeau, O. [1 ,2 ,3 ]
Aromi, G. [5 ]
Majer, J. [6 ]
Luis, F. [1 ,2 ,3 ]
机构
[1] CSIC, ICMA, Zaragoza, Spain
[2] Univ Zaragoza, Zaragoza, Spain
[3] Univ Zaragoza, Dept Fis Mat Condensada, Zaragoza, Spain
[4] Fdn ARAID, Zaragoza 50004, Spain
[5] Univ Barcelona, Dept Quim Inorgan, Barcelona, Spain
[6] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
[7] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
基金
欧洲研究理事会;
关键词
METAL-ORGANIC FRAMEWORK; SPIN QUBITS; SURFACES; MAGNETS; COHERENCE; DESIGN; COMPLEXES; ELECTRODYNAMICS; RELAXATION; CHEMISTRY;
D O I
10.1039/c6dt02664h
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.
引用
收藏
页码:16682 / 16693
页数:12
相关论文
共 50 条
  • [1] A Quantum Computation Model for Molecular Nanomagnets
    Cirillo, Giovanni Amedeo
    Turvani, Giovanna
    Graziano, Mariagrazia
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 1027 - 1039
  • [2] Quantum Computation with Molecular Nanomagnets: Achievements, Challenges, and New Trends
    Ghirri, Alberto
    Troiani, Filippo
    Affronte, Marco
    MOLECULAR NANOMAGNETS AND RELATED PHENOMENA, 2015, 164 : 383 - 430
  • [3] Molecular Nanomagnets as Quantum Simulators
    Santini, P.
    Carretta, S.
    Troiani, F.
    Amoretti, G.
    PHYSICAL REVIEW LETTERS, 2011, 107 (23)
  • [4] Quantum dynamics in molecular nanomagnets
    Wernsdorfer, Wolfgang
    COMPTES RENDUS CHIMIE, 2008, 11 (10) : 1086 - 1109
  • [5] Molecular nanomagnets with competing interactions as optimal units for qudit-based quantum computation
    Chizzini, M.
    Crippa, L.
    Chiesa, A.
    Tacchino, F.
    Petiziol, F.
    Tavernelli, I
    Santini, P.
    Carretta, S.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [6] Dephasing of quantum tunnelling in molecular nanomagnets
    Shu-Qun, Zhang
    Zhi-De, Chen
    CHINESE PHYSICS B, 2008, 17 (04) : 1436 - 1442
  • [7] Scalable quantum computation architecture using always-on Ising interactions via quantum feedforward
    Satoh, Takahiko
    Matsuzaki, Yuichiro
    Kakuyanagi, Kosuke
    Munro, William J.
    Semba, Koichi
    Yamaguchi, Hiroshi
    Saito, Shiro
    PHYSICAL REVIEW A, 2015, 91 (05):
  • [8] Dephasing of quantum tunnelling in molecular nanomagnets
    张树群
    陈芝得
    ChinesePhysicsB, 2008, 17 (04) : 1436 - 1442
  • [9] Quantum tunnelling of magnetization in molecular nanomagnets
    Wernsdorfer, W
    Quantum Entanglement and Information Processing, 2004, 79 : 561 - +
  • [10] Molecular nanomagnets with switchable coupling for quantum simulation
    Alessandro Chiesa
    George F. S. Whitehead
    Stefano Carretta
    Laura Carthy
    Grigore A. Timco
    Simon J. Teat
    Giuseppe Amoretti
    Eva Pavarini
    Richard E. P. Winpenny
    Paolo Santini
    Scientific Reports, 4