Data preprocessing for anomaly based network intrusion detection: A review

被引:164
|
作者
Davis, Jonathan J. [1 ]
Clark, Andrew J. [2 ]
机构
[1] DSTO, Div C3I, Edinburgh, SA 5111, Australia
[2] Queensland Univ Technol, Informat Secur Inst, Brisbane, Qld 4001, Australia
关键词
Data preprocessing; Network intrusion; Anomaly detection; Data mining; Feature construction; Feature selection; SYSTEM;
D O I
10.1016/j.cose.2011.05.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data preprocessing is widely recognized as an important stage in anomaly detection. This paper reviews the data preprocessing techniques used by anomaly-based network intrusion detection systems (NIDS), concentrating on which aspects of the network traffic are analyzed, and what feature construction and selection methods have been used. Motivation for the paper comes from the large impact data preprocessing has on the accuracy and capability of anomaly-based NIDS. The review finds that many NIDS limit their view of network traffic to the TCP/IP packet headers. Time-based statistics can be derived from these headers to detect network scans, network worm behavior, and denial of service attacks. A number of other NIDS perform deeper inspection of request packets to detect attacks against network services and network applications. More recent approaches analyze full service responses to detect attacks targeting clients. The review covers a wide range of NIDS, highlighting which classes of attack are detectable by each of these approaches. Data preprocessing is found to predominantly rely on expert domain knowledge for identifying the most relevant parts of network traffic and for constructing the initial candidate set of traffic features. On the other hand, automated methods have been widely used for feature extraction to reduce data dimensionality, and feature selection to find the most relevant subset of features from this candidate set. The review shows a trend toward deeper packet inspection to construct more relevant features through targeted content parsing. These context sensitive features are required to detect current attacks. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:353 / 375
页数:23
相关论文
共 50 条
  • [1] Data Preprocessing for Network Intrusion Detection
    Li, Li
    Ye, Yuan
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS, PTS 1 AND 2, 2010, : 867 - 871
  • [2] Review on Anomaly based Network Intrusion Detection System
    Samrin, Rafath
    Vasumathi, D.
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 141 - 147
  • [3] Fast Anomaly Detection based on Data Stream in Network Intrusion Detection System
    Yang, Yihong
    Xu, Xiaolong
    Wang, Lina
    Zhong, Weiyi
    Yan, Chao
    Qi, Lianyong
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 87 - 91
  • [4] Research on Network Traffic Data Anomaly Identification and Detection Based on an Intrusion Detection Algorithm
    Zhang, Hui
    International Journal of Network Security, 2022, 24 (04) : 689 - 694
  • [5] Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection
    Zhang, Jiong
    Zulkernine, Mohammad
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 2388 - 2393
  • [6] Data Preprocessing for Distance-based Unsupervised Intrusion Detection
    Said, Dina
    Stirling, Lisa
    Federolf, Peter
    Barker, Ken
    2011 NINTH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, 2011, : 181 - 188
  • [7] ANOMALY-BASED NETWORK INTRUSION DETECTION METHODS
    Nevlud, Pavel
    Bures, Miroslav
    Kapicak, Lukas
    Zdralek, Jaroslav
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 11 (06) : 468 - 474
  • [8] Genetic algorithms in intrusion detection based on network anomaly
    Zhang, Feng-Bin
    Yang, Yong-Tian
    Jiang, Zi-Yang
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2004, 32 (05): : 875 - 877
  • [9] Anomaly intrusion detection system based on neural network
    Li, Yuan-Bing
    Fang, Ding-Yi
    Wu, Xiao-Nan
    Chen, Xiao-Jiang
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2005, 27 (09): : 1648 - 1651
  • [10] LSTM for Anomaly-Based Network Intrusion Detection
    Althubiti, Sara A.
    Jones, Eric Marcell, Jr.
    Roy, Kaushik
    2018 28TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2018, : 293 - 295