A deep learning approach for brain tumour detection system using convolutional neural networks

被引:1
|
作者
Kalaiselvi, T. [1 ]
Padmapriya, S. T. [1 ]
Sriramakrishnan, P. [2 ]
Somasundaram, K. [1 ]
机构
[1] Gandhigram Rural Inst Deemed Univ, Dept Comp Sci & Applicat, Gandhigram 624302, Tamil Nadu, India
[2] Kalasalingam Acad Res & Educ Deemed Univ, Dept Comp Applicat, Krishnankoil 626126, Tamil Nadu, India
关键词
neural networks; MRI; magnetic resonance imaging; brain tumour; deep learning; tumour detection; CNN; convolutional neural network; BraTS Dataset; activation functions; WBA datasets;
D O I
10.1504/IJDSDE.2021.120046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proposed work is aimed to develop convolutional neural network (CNN) architecture based computer aided diagnostic system for human brain tumour detection process from magnetic resonance imaging (MRI) volumes. CNN is a class of deep learning networks that are commonly applied to analyse voluminous images. In the proposed method, a CNN model is constructed and trained using MRI volumes of BraTS2013 data. More than 4000 images of normal and tumour slices are used to train the proposed CNN system with 2-layers. The system is tested with about 1000 slices from BraTS and got very accurate results about 90-98% of accuracy. Further, the performance of proposed CNN system is tested by taking a set of clinical MRI volumes of popular hospital. The obtained results are discussed and focused for the future improvement of the proposed system.
引用
收藏
页码:514 / 526
页数:13
相关论文
共 50 条
  • [31] Detecting brain tumors using deep learning convolutional neural network with transfer learning approach
    Anjum, Sadia
    Hussain, Lal
    Ali, Mushtaq
    Alkinani, Monagi H.
    Aziz, Wajid
    Gheller, Sabrina
    Abbasi, Adeel Ahmed
    Marchal, Ali Raza
    Suresh, Harshini
    Duong, Tim Q.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) : 307 - 323
  • [32] MRI brain tumor detection and classification using parallel deep convolutional neural networks
    Rahman T.
    Islam M.S.
    Measurement: Sensors, 2023, 26
  • [33] Modified Region Growing for MRI Brain Image Classification System Using Deep Learning Convolutional Neural Networks
    Jayachandran, A.
    Andrews, J.
    Prabhu, L. Arokia Jesu
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 710 - 717
  • [34] Malware detection approach based on deep convolutional neural networks
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (1-2) : 145 - 157
  • [35] A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks
    Yin, Chuanlong
    Zhu, Yuefei
    Fei, Jinlong
    He, Xinzheng
    IEEE ACCESS, 2017, 5 : 21954 - 21961
  • [36] Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
    Cha, Young-Jin
    Choi, Wooram
    Buyukozturk, Oral
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) : 361 - 378
  • [37] A deep learning model using convolutional neural networks for caries detection and recognition with endoscopes
    Zang, Xiaoyi
    Luo, Chunlong
    Qiao, Bo
    Jin, Nenghao
    Zhao, Yi
    Zhang, Haizhong
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (24)
  • [38] A Transfer Learning Approach for Diabetic Retinopathy Classification Using Deep Convolutional Neural Networks
    Krishnan, Arvind Sai
    Clive, Derik R.
    Bhat, Vilas
    Ramteke, Pravin Bhaskar
    Koolagudi, Shashidhar G.
    IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [39] An integrated approach for medical abnormality detection using deep patch convolutional neural networks
    Xi, Pengcheng
    Guan, Haitao
    Shu, Chang
    Borgeat, Louis
    Goubran, Rafik
    VISUAL COMPUTER, 2020, 36 (09): : 1869 - 1882
  • [40] An integrated approach for medical abnormality detection using deep patch convolutional neural networks
    Pengcheng Xi
    Haitao Guan
    Chang Shu
    Louis Borgeat
    Rafik Goubran
    The Visual Computer, 2020, 36 : 1869 - 1882