Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding

被引:76
|
作者
Li, Suiyi [1 ,2 ,3 ]
Huang, An [2 ,3 ,4 ]
Chen, Yann-Jiun [2 ,3 ,5 ]
Li, Dagang [1 ]
Turng, Lih-Sheng [2 ,3 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Univ Wisconsin, Dept Mech Engn, Ctr Polymer Engn, Madison, WI 53706 USA
[3] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
[4] South China Univ Technol, Sch Mech & Automot Engn, Dept Ind Equipment & Control Engn, Guangzhou 510640, Guangdong, Peoples R China
[5] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 10607, Taiwan
基金
中国国家自然科学基金;
关键词
Particle-reinforcement; Electrical properties; Mechanical properties; Extrusion; Electromagnetic interference shielding; BAMBOO CHARCOAL PARTICLES; CARBON-NANOTUBES/POLYMER; BIOCOMPOSITES; MICROSTRUCTURE; CONVERSION; BIOMASS; IMPACT; GREEN;
D O I
10.1016/j.compositesb.2018.07.049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly filled (up to 80 wt%) biochar/ultra-high molecular weight polyethylene (UHMWPE)/linear low density polyethylene (LLDPE) composites with excellent electromagnetic interference (EMI) shielding performance were successfully prepared using mass-producing extrusion and hot-compression methods. Carbonizing bamboo charcoal (BC1100) at 1100 degrees C resulted in a graphite-like structure leading to good electrical conductivity and a high specific surface area. The surface morphology and crystalline structure, as well as the thermal, mechanical, electrical, and EMI shielding properties of the composites, were characterized. The addition of BC1100 enhanced the Young's modulus, tensile strength, and hardness of the composites, but reduced the ductility. Most importantly, the BC1100 biochar remarkably improved the electrical conductivity and EMI shielding effectiveness (SE) of the composites. In particular, the composite with 80 wt% BC1100 exhibited a conductivity of 107.6 S/m, one of the highest values among reported conductive polymer composites fabricated by melt processing, and a very high EMI SE of 48.7 dB (99.998% attenuation) at 1500 MHz. The specific EMI SE of the 80 wt% BC1100 composite was 39.0 dB cm(3)/g, nearly four times higher than that of copper (10 dB cm(3)/g). These results suggest a new, scalable way of effectively utilizing renewable biochar in conductive polymer composites, especially for EMI shielding applications.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 50 条
  • [21] Carbon fiber reinforced highly filled charcoal powder/ultra high molecular weight polyethylene composites
    Li, Suiyi
    Li, Dagang
    MATERIALS LETTERS, 2014, 134 : 99 - 102
  • [22] Wear performance of ultra high molecular weight polyethylene/quartz composites
    Xie, XL
    Tang, CY
    Wu, XC
    Li, RKY
    Wu, H
    CONTRIBUTIONS OF SURFACE ENGINEERING TO MODERN MANUFACTURING AND REMANUFACTURING, 2002, : 546 - 550
  • [23] Electrical properties of graphene nanoplatelets/ultra-high molecular weight polyethylene composites
    Wang, Yiqun
    Yang, Jianfeng
    Zhou, Shiyi
    Zhang, Wentao
    Chuan, Ren
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (01) : 91 - 96
  • [24] Preparation and characterization of activated carbon/ultra-high molecular weight polyethylene composites
    Wang, Ran
    Meng, Taotao
    Zhang, Bowen
    Chen, Chuchu
    Li, Dagang
    POLYMER COMPOSITES, 2021, 42 (06) : 2728 - 2736
  • [25] Polymer nanocomposites of ultra-high molecular weight polyethylene
    Padhy, Vaibhav
    Kandasubramanian, Balasubramanian
    POLYMER BULLETIN, 2024, 81 (17) : 15259 - 15292
  • [26] Degradation rate of ultra-high molecular weight polyethylene
    Kurtz, SM
    Rimnac, CM
    Bartel, DL
    JOURNAL OF ORTHOPAEDIC RESEARCH, 1997, 15 (01) : 57 - 61
  • [27] Electrical properties of graphene nanoplatelets/ultra-high molecular weight polyethylene composites
    Yiqun Wang
    Jianfeng Yang
    Shiyi Zhou
    Wentao Zhang
    Ren Chuan
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 91 - 96
  • [28] Ballistic impact behavior of the aramid and ultra-high molecular weight polyethylene composites
    Karahan, Mehmet
    Jabbar, Abdul
    Karahan, Nevin
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2015, 34 (01) : 37 - 48
  • [29] Drawing behavior and mechanical properties of ultra-high molecular weight polyethylene blends with a linear polyethylene wax
    Shen, Lihua
    Severn, John
    Bastiaansen, Cees W. M.
    POLYMER, 2018, 153 : 354 - 361
  • [30] Natural fiber-reinforced high-density polyethylene composite hybridized with ultra-high molecular weight polyethylene
    Ning, Haibin
    Pillay, Selvum
    Lu, Na
    Zainuddin, Shaik
    Yan, Yongzhe
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (15) : 2119 - 2129