Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding

被引:76
|
作者
Li, Suiyi [1 ,2 ,3 ]
Huang, An [2 ,3 ,4 ]
Chen, Yann-Jiun [2 ,3 ,5 ]
Li, Dagang [1 ]
Turng, Lih-Sheng [2 ,3 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Univ Wisconsin, Dept Mech Engn, Ctr Polymer Engn, Madison, WI 53706 USA
[3] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
[4] South China Univ Technol, Sch Mech & Automot Engn, Dept Ind Equipment & Control Engn, Guangzhou 510640, Guangdong, Peoples R China
[5] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 10607, Taiwan
基金
中国国家自然科学基金;
关键词
Particle-reinforcement; Electrical properties; Mechanical properties; Extrusion; Electromagnetic interference shielding; BAMBOO CHARCOAL PARTICLES; CARBON-NANOTUBES/POLYMER; BIOCOMPOSITES; MICROSTRUCTURE; CONVERSION; BIOMASS; IMPACT; GREEN;
D O I
10.1016/j.compositesb.2018.07.049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly filled (up to 80 wt%) biochar/ultra-high molecular weight polyethylene (UHMWPE)/linear low density polyethylene (LLDPE) composites with excellent electromagnetic interference (EMI) shielding performance were successfully prepared using mass-producing extrusion and hot-compression methods. Carbonizing bamboo charcoal (BC1100) at 1100 degrees C resulted in a graphite-like structure leading to good electrical conductivity and a high specific surface area. The surface morphology and crystalline structure, as well as the thermal, mechanical, electrical, and EMI shielding properties of the composites, were characterized. The addition of BC1100 enhanced the Young's modulus, tensile strength, and hardness of the composites, but reduced the ductility. Most importantly, the BC1100 biochar remarkably improved the electrical conductivity and EMI shielding effectiveness (SE) of the composites. In particular, the composite with 80 wt% BC1100 exhibited a conductivity of 107.6 S/m, one of the highest values among reported conductive polymer composites fabricated by melt processing, and a very high EMI SE of 48.7 dB (99.998% attenuation) at 1500 MHz. The specific EMI SE of the 80 wt% BC1100 composite was 39.0 dB cm(3)/g, nearly four times higher than that of copper (10 dB cm(3)/g). These results suggest a new, scalable way of effectively utilizing renewable biochar in conductive polymer composites, especially for EMI shielding applications.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 50 条
  • [1] Highly filled bamboo charcoal powder reinforced ultra-high molecular weight polyethylene
    You, Zhipei
    Li, Dagang
    MATERIALS LETTERS, 2014, 122 : 121 - 124
  • [2] Mechanical, Electrical, and Thermal Properties of Highly Filled Bamboo Charcoal/Ultra-High Molecular Weight Polyethylene Composites
    Li, Suiyi
    Wang, Haiying
    Chen, Chuchu
    Li, Xiaoyan
    Deng, Qiaoyun
    Li, Dagang
    POLYMER COMPOSITES, 2018, 39 : E1858 - E1866
  • [3] AN INVESTIGATION OF IN-PLANE PERFORMANCE OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE COMPOSITES
    Hazzard, Mark K.
    Curtis, Paul T.
    Iannucci, Lorenzo
    Hallett, Stephen
    Trask, Richard
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [4] An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites
    Langston, Tye
    COMPOSITE STRUCTURES, 2017, 179 : 245 - 257
  • [5] Rheological, thermal, and morphological properties of low-density polyethylene/ultra-high-molecular-weight polyethylene and linear low-density polyethylene/ultra-high-molecular-weight polyethylene blends
    Chen, Yang
    Zou, Huawei
    Liang, Mei
    Liu, Pengbo
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 129 (03) : 945 - 953
  • [6] WEAR OF HIGHLY CRYSTALLINE ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE
    Van Citters, Douglas W.
    Levack, Ashley E.
    Kennedy, Francis E.
    PROCEEDINGS OF THE STLE/ASME INTERNATIONAL JOINT TRIBOLOGY CONFERENCE 2008, 2009, : 135 - 137
  • [7] Analysis of Electrical, Dielectric, and Electromagnetic Interference Shielding Behavior of Graphite Filled High Density Polyethylene Composites
    Panwar, Varij
    Mehra, R. M.
    POLYMER ENGINEERING AND SCIENCE, 2008, 48 (11): : 2178 - 2187
  • [8] The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites
    You, Zhipei
    Li, Dagang
    MATERIALS LETTERS, 2013, 112 : 197 - 199
  • [9] Morphology of ultra-high molecular weight polyethylene
    Chen, Shouxi
    Jin, Yongze
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 1993, 9 (02): : 81 - 85
  • [10] Developing Triboengineering Composites Based on Ultra-High Molecular Weight Polyethylene
    E. S. Kolesova
    O. V. Gogoleva
    P. N. Petrova
    M. A. Markova
    A. A. Chirikov
    Inorganic Materials: Applied Research, 2021, 12 : 885 - 888