Model matching and filter design using orthonormal basis functions

被引:3
|
作者
Zeng, Jie [1 ]
de Callafon, Raymond [1 ]
机构
[1] Zona Technol Inc, 9489 E Iron Sq Dr,Suite 100, Scottsdale, AZ 85258 USA
关键词
D O I
10.1109/CDC.2006.377643
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Affine model parametrizations using orthonormal basis functions have been widely used in system identification and adaptive signal processing. The main advantage of using orthonormal basis functions in a (generalized) orthonormal Finite Impulse Response (FIR) filter lies in the possibility of incorporating prior knowledge of the system dynamics into the filter design and approximation process. As a result, more accurate and simplified models can be obtained with a limited number of basis functions. In this paper the linear parameter structure of a generalized FIR filter is used to formulate analytic solutions for model matching problems. Several construction methods of orthonormal basis functions are discussed and a case study using the generalized FIR filter to approximate the dynamics of an optimal feed-forward filter is presented.
引用
收藏
页码:5347 / +
页数:2
相关论文
共 50 条
  • [41] On-line damage identification using model based orthonormal functions
    de Callafon, RA
    STRUCTURAL HEALTH MONTORING 2000, 1999, : 912 - 920
  • [42] Data Driven Predictive Control Based on Orthonormal Basis Functions
    Bachnas, A. A.
    Weiland, S.
    Toth, R.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3026 - 3031
  • [43] Orthonormal basis functions for modelling continuous-time systems
    Akçay, H
    Ninness, B
    SIGNAL PROCESSING, 1999, 77 (03) : 261 - 274
  • [44] Asymptotically optimal orthonormal basis functions for LPV system identification
    Toth, Roland
    Heuberger, Peter S. C.
    Van den Hof, Paul M. J.
    AUTOMATICA, 2009, 45 (06) : 1359 - 1370
  • [45] Synthesis of complete orthonormal fractional basis functions with prescribed poles
    Akcay, Hueseyin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (10) : 4716 - 4728
  • [46] Parameter optimization of orthonormal basis functions for efficient rational approximations
    Tanguy, N.
    Iassamen, N.
    Telescu, M.
    Cloastre, P.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (16) : 4963 - 4970
  • [47] AN ORTHONORMAL BASIS OF SOLENOIDAL VECTOR-FUNCTIONS VANISHING ON A CYLINDER
    MACHACEK, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3483 - 3496
  • [48] System identification with orthonormal basis functions: An application to flexible structures
    Nalbantoglu, V
    Bokor, J
    Balas, G
    ROBUST CONTROL DESIGN (ROCODN'97): A PROCEEDINGS VOLUME FROM THE IFAC SYMPOSIUM, 1997, : 383 - 388
  • [49] Matching a given field using hierarchal vector basis functions
    Webb, JP
    ELECTROMAGNETICS, 2004, 24 (1-2) : 113 - 122
  • [50] Dynamics reconstruction using orthonormal functions
    Depto. de Ing. Quim. y Nuclear, Univ. Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain
    不详
    不详
    Appl Math Lett, 8 (39-43):