Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks

被引:29
|
作者
Cintas, Celia [1 ]
Lucena, Manuel [2 ]
Manuel Fuertes, Jose [2 ]
Delrieux, Claudio [3 ]
Navarro, Pablo [4 ,6 ]
Gonzalez-Jose, Rolando [4 ]
Molinos, Manuel [5 ]
机构
[1] IBM Res Africa, Nairobi, Kenya
[2] Univ Jaen, Dept Comp Sci, Jaen, Spain
[3] Univ Nacl Sur, Dept Ingn Elect & Comp, CONICET, Bahia Blanca, Buenos Aires, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Inst Patagon Ciencias Sociales & Humanas, Ctr Nacl Patagon, Puerto Madryn, Argentina
[5] Univ Jaen, Res Univ Inst Iberian Archeol, Jaen, Spain
[6] Univ Nacl Patagonia San Juan Bosco, Fac Ingn, Dept Informat DIT, Trelew Chubut, Argentina
关键词
Deep learning; Convolutional networks; Pottery profiles; Typologies; RECOGNITION; PROFILES;
D O I
10.1016/j.culher.2019.06.005
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Accurate classification of pottery vessels is a key aspect in several archaeological inquiries, including documentation of changes in style and ornaments, inference of chronological and ethnic groups, trading routes analyses, and many other matters. We present an unsupervised method for automatic feature extraction and classification of wheel-made vessels. A convolutional neural network was trained with a profile image database from Iberian wheel made pottery vessels found in the upper valley of the Guadalquivir River (Spain). During the design of the model, data augmentation and regularization techniques were implemented to obtain better generalization outcomes. The resulting model is able to provide classification on profile images automatically, with an accuracy mean score of 0.9013. Such computation methods will enhance and complement research on characterization and classification of pottery assemblages based on fragments. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 50 条
  • [41] Feature extraction and classification of VHR images with attribute profiles and convolutional neural networks
    Tian, Tian
    Gao, Lang
    Song, Weijing
    Choo, Kim-Kwang Raymond
    He, Jijun
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18637 - 18656
  • [42] Feature Extraction and Fusion Using Deep Convolutional Neural Networks for Face Detection
    Lu, Xiaojun
    Duan, Xu
    Mao, Xiuping
    Li, Yuanyuan
    Zhang, Xiangde
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [43] Automatic Classification of Diabetic Retinopathy based on Convolutional Neural Networks
    Zhang, Xingming
    Zhang, Wanwan
    Fang, Mingchao
    Xue, Jiale
    Wu, Lifeng
    [J]. 2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2018, 10836
  • [44] A Pyramid Deep Feature Extraction Model for the Automatic Classification of Upper Extremity Fractures
    Kaya, Oguz
    Tasci, Burak
    [J]. DIAGNOSTICS, 2023, 13 (21)
  • [45] Automatic Waterline Extraction of Tidal Flats from SAR Images Based on Deep Convolutional Neural Networks
    Zhang, Shuangshang
    Xu, Qing
    Li, Xiaofeng
    [J]. 2022 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2022), 2022, : 273 - 277
  • [46] Deep Convolutional Neural Networks for Feature Extraction of Images Generated from Complex Networks Topologies
    Xu, Ye
    Chi, Yun
    Tian, Ye
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2018, 103 (01) : 327 - 338
  • [47] Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
    Hirotoshi Takiyama
    Tsuyoshi Ozawa
    Soichiro Ishihara
    Mitsuhiro Fujishiro
    Satoki Shichijo
    Shuhei Nomura
    Motoi Miura
    Tomohiro Tada
    [J]. Scientific Reports, 8
  • [48] Automatic ear detection and feature extraction using Geometric Morphometrics and convolutional neural networks
    Cintas, Celia
    Quinto-Sanchez, Mirsha
    Acuna, Victor
    Paschetta, Carolina
    de Azevedo, Soledad
    Silva de Cerqueira, Caio Cesar
    Ramallo, Virginia
    Gallo, Carla
    Poletti, Giovanni
    Bortolini, Maria Catira
    Canizales-Quinteros, Samuel
    Rothhammer, Francisco
    Bedoya, Gabriel
    Ruiz-Linares, Andres
    Gonzalez-Jose, Rolando
    Delrieux, Claudio
    [J]. IET BIOMETRICS, 2017, 6 (03) : 211 - 223
  • [49] Audio Feature Extraction and Classification Technology Based on Convolutional Neural Network
    Liu, Zhenfang
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (09) : 1425 - 1431
  • [50] Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
    Takiyama, Hirotoshi
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Nomura, Shuhei
    Miura, Motoi
    Tada, Tomohiro
    [J]. SCIENTIFIC REPORTS, 2018, 8