Weighted L∞ isotonic regression

被引:0
|
作者
Stout, Quentin F. [1 ]
机构
[1] Univ Michigan, Comp Sci & Engn, Ann Arbor, MI 48109 USA
关键词
Isotonic regression; Monotonic; Unimodal; L-infinity; Tree; Linear order; Dag; INDEPENDENT VARIABLES; ALGORITHM; CONSTRAINTS; SET;
D O I
10.1016/j.jcss.2017.09.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Algorithms are given for determining weighted L-infinity isotonic regressions satisfying order constraints given by a directed acyclic graph with n vertices and m edges. An Theta (m logn) algorithm is given, but it uses parametric search, so a practical approach is introduced, based on calculating prefix solutions. For linear and tree orderings it yields isotonic and unimodal regressions in Theta(ri logn) time. Practical algorithms are given for when the values are constrained to a specified set, and when the number of different weights, or different values, is << n. We also give a simple randomized algorithm taking Theta(m log n) expected time. L-infinity isotonic regressions are not unique, so we examine properties of the regressions an algorithm produces. In this regard the prefix approach is superior to algorithms, such as parametric search and the randomized algorithm, which are based on feasibility tests. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
  • [1] Weighted Isotonic Regression under the L1 Norm
    Angelov, Stanislav
    Harb, Boulos
    Kannan, Sampath
    Wang, Li-San
    [J]. PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 783 - +
  • [2] Strict L∞ Isotonic Regression
    Quentin F. Stout
    [J]. Journal of Optimization Theory and Applications, 2012, 152 : 121 - 135
  • [3] ON THE CONSISTENCY OF THE L(P)-ISOTONIC REGRESSION
    CUESTA, JA
    DOMINGUEZ, JS
    MATRAN, C
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1992, 37 (01) : 129 - 132
  • [4] THE MINIMAL L(1) ISOTONIC REGRESSION
    SHI, NZ
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (01) : 175 - 189
  • [5] Isotonic regression and isotonic projection
    Nemeth, A. B.
    Nemeth, S. Z.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 494 : 80 - 89
  • [6] Penalized isotonic regression
    Wu, Jiwen
    Meyer, Mary C.
    Opsomer, Jean D.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 161 : 12 - 24
  • [7] ITERATIVE ISOTONIC REGRESSION
    Guyader, Arnaud
    Hengartner, Nick
    Jegou, Nicolas
    Matzner-Lober, Eric
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 1 - 23
  • [8] Bounded isotonic regression
    Luss, Ronny
    Rosset, Saharon
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4488 - 4514
  • [9] AN ISOTONIC REGRESSION ALGORITHM
    DYKSTRA, RL
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1981, 5 (04) : 355 - 363
  • [10] The bias of isotonic regression
    Dai, Ran
    Song, Hyebin
    Barber, Rina Foygel
    Raskutti, Garvesh
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 801 - 834