ITERATIVE ISOTONIC REGRESSION

被引:1
|
作者
Guyader, Arnaud [1 ,2 ]
Hengartner, Nick [3 ]
Jegou, Nicolas [4 ]
Matzner-Lober, Eric [4 ]
机构
[1] Univ Rennes 2, INRIA, F-35043 Rennes, France
[2] IRMAR, F-35043 Rennes, France
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Univ Rennes 2, F-35043 Rennes, France
关键词
Nonparametric statistics; isotonic regression; additive models; metric projection onto convex cones; NONPARAMETRIC REGRESSION; ASYMPTOTIC PROPERTIES; PROJECTION ALGORITHM; CONSISTENCY; ESTIMATORS; MODELS;
D O I
10.1051/ps/2014012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article explores some theoretical aspects of a recent nonparametric method for estimating a univariate regression function of bounded variation. The method exploits the Jordan decomposition which states that a function of bounded variation can be decomposed as the sum of a non-decreasing function and a non-increasing function. This suggests combining the backfitting algorithm for estimating additive functions with isotonic regression for estimating monotone functions. The resulting iterative algorithm is called Iterative Isotonic Regression (I.I.R.). The main result in this paper states that the estimator is consistent if the number of iterations k(n) grows appropriately with the sample size n. The proof requires two auxiliary results that are of interest in and by themselves: firstly, we generalize the well-known consistency property of isotonic regression to the framework of a non-monotone regression function, and secondly, we relate the backfitting algorithm to von Neumann's algorithm in convex analysis. We also analyse how the algorithm can be stopped in practice using a data-splitting procedure.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] Isotonic regression and isotonic projection
    Nemeth, A. B.
    Nemeth, S. Z.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 494 : 80 - 89
  • [2] Penalized isotonic regression
    Wu, Jiwen
    Meyer, Mary C.
    Opsomer, Jean D.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 161 : 12 - 24
  • [3] Bounded isotonic regression
    Luss, Ronny
    Rosset, Saharon
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4488 - 4514
  • [4] AN ISOTONIC REGRESSION ALGORITHM
    DYKSTRA, RL
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1981, 5 (04) : 355 - 363
  • [5] The bias of isotonic regression
    Dai, Ran
    Song, Hyebin
    Barber, Rina Foygel
    Raskutti, Garvesh
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 801 - 834
  • [6] Generalized Isotonic Regression
    Luss, Ronny
    Rosset, Saharon
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (01) : 192 - 210
  • [7] Causal isotonic regression
    Westling, Ted
    Gilbert, Peter
    Carone, Marco
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (03) : 719 - 747
  • [8] Isotonic distributional regression
    Henzi, Alexander
    Ziegel, Johanna F.
    Gneiting, Tilmann
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2021, 83 (05) : 963 - 993
  • [9] Private Isotonic Regression
    Ghazi, Badih
    Kamath, Pritish
    Kumar, Ravi
    Manurangsi, Pasin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [10] Suspended Sediment Modeling Using Sequential Minimal Optimization Regression and Isotonic Regression Algorithms Integrated with an Iterative Classifier Optimizer
    Safari, Mir Jafar Sadegh
    Meshram, Sarita Gajbhiye
    Khosravi, Khabat
    Moatamed, Adel
    [J]. PURE AND APPLIED GEOPHYSICS, 2022, 179 (10) : 3751 - 3765