Natural CuFe2O4 mineral for solid oxide fuel cells

被引:31
|
作者
Liu, Yanyan [1 ]
Wu, Yan [3 ]
Zhang, Wei [2 ]
Zhang, Jing [3 ]
Wang, Baoyuan [2 ]
Xia, Chen [1 ]
Afzal, Muhammad [1 ]
Li, Junjiao [4 ]
Singh, Manish [1 ]
Zhu, Bin [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Dept Energy Technol, SE-10044 Stockholm, Sweden
[2] Hubei Univ, Fac Phys & Elect Sci, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Hubei, Peoples R China
[3] China Univ Geosci Wuhan, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
[4] Nanjing Yunna Nanotech Ltd, Heyan Rd 271, Nanjing 210038, Jiangsu, Peoples R China
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
Natural mineral; Cuprospinel; Chalcopyrite; Cathodic catalyst; Low temperature solid oxide fuel cells; IONIC-CONDUCTIVITY; SPINEL; NANOCOMPOSITE; OXIDATION; BEHAVIOR; INTERCONNECT; COMPOSITE; HEMATITE;
D O I
10.1016/j.ijhydene.2017.01.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Natural mineral, cuprospinel (CuFe2O4) originated from natural chalcopyrite ore (CuFeS2), has been used for the first time in low temperature solid oxide fuel cells. Three different types of devices are fabricated to explore the optimum application of CuFe2O4 in fuel cells. Device with CuFe2O4 as a cathode catalyst exhibits a maximum power density of 180 mW/cm(2) with an open circuit voltage 1.07 V at 550 degrees C. And a power output of 587 mW/cm(2) is achieved from the device using a homogeneous mixture membrane of CuFe2O4, Li2O-ZnO-Sm0.2Ce0.8O2 and LiNi0.8Co0.15Al0.05O2. Electrochemical impedance spectrum analysis reveals different mechanisms for the devices. The results demonstrate that natural mineral, chalcopyrite, can provide a new implementation to utilize the natural resources for next generation fuel cells being cost-effective and make great contributions to the environmentally friendly sustainable energy. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17514 / 17521
页数:8
相关论文
共 50 条
  • [21] Synthesis, magnetic properties and photocatalytic activity of CuFe2O4/MgFe2O4 and MgFe2O4/CuFe2O4 core/shell nanoparticles
    Khedr, M. H.
    Bahgat, M.
    El Rouby, W. M. A.
    MATERIALS TECHNOLOGY, 2008, 23 (01) : 27 - 32
  • [22] Mossbauer studies of nanosize CuFe2O4 particles
    Gajbhiye, NS
    Balaji, G
    Bhattacharyya, S
    Ghafari, M
    HYPERFINE INTERACTIONS, 2004, 156 (01): : 57 - 61
  • [23] ELECTRICAL SWITCHING AND MEMORY PHENOMENA IN CUFE2O4
    YAMASHIRO, T
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1973, 12 (01) : 148 - 149
  • [24] Microwave assisted decoration of titanium oxide nanotubes with CuFe2O4 quantum dots for solid phase extraction of uranium
    Mortada, W. I.
    Moustafa, A. F.
    Ismail, A. M.
    Hassanien, M. M.
    Aboud, A. A.
    RSC ADVANCES, 2015, 5 (77): : 62414 - 62423
  • [25] Structural phase transition in CuFe2O4 spinel
    Balagurov, A. M.
    Bobrikov, I. A.
    Maschenko, M. S.
    Sangaa, D.
    Simkin, V. G.
    CRYSTALLOGRAPHY REPORTS, 2013, 58 (05) : 710 - 717
  • [26] Nanocrystalline CuFe2O4 obtained by mechanical grinding
    Goya, GF
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (07) : 563 - 565
  • [27] Structural phase transition in CuFe2O4 spinel
    A. M. Balagurov
    I. A. Bobrikov
    M. S. Maschenko
    D. Sangaa
    V. G. Simkin
    Crystallography Reports, 2013, 58 : 710 - 717
  • [28] Preparation and Magnetic Properties of CuFe2O4 Nanoparticles
    Jiao, Hua
    Jiao, Gengsheng
    Wang, Junlong
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2013, 43 (02) : 131 - 134
  • [29] MAGNETOCRYSTALLINE ANISOTROPY OF TETRAGONAL PHASE CUFE2O4
    NAGATA, H
    MIYADAI, T
    MIYAHARA, S
    IEEE TRANSACTIONS ON MAGNETICS, 1972, MAG8 (03) : 451 - 453
  • [30] Solid state synthesis of CuFe2O4 from Cu(OH)2 · CuCO3–4FeC2O4 · 2H2O mixtures: mechanism of reaction and thermal characterization of CuFe2O4
    Vittorio Berbenni
    Amedeo Marini
    Chiara Milanese
    Giovanna Bruni
    Journal of Thermal Analysis and Calorimetry, 2010, 99 : 437 - 442