Analysis, Simulation and Prediction of Multivariate Random Fields with Package Random Fields

被引:0
|
作者
Schlather, Martin [1 ]
Malinowski, Alexander [1 ]
Menck, Peter J. [2 ]
Oesting, Marco [3 ]
Strokorb, Kirstin [1 ]
机构
[1] Univ Mannheim, Mannheim, Germany
[2] Potsdam Inst Climate Impact Res, Potsdam, Germany
[3] INRA, AgroParisTech, Paris, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2015年 / 63卷 / 08期
关键词
multivariate geostatistics; bivariate Matern model; linear model of coregionalization; matrix-valued covariance function; multivariate random field; R; vector-valued field; CROSS-COVARIANCE FUNCTIONS; R PACKAGE; MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling of and inference on multivariate data that have been measured in space, such as temperature and pressure, are challenging tasks in environmental sciences, physics and materials science. We give an overview over and some background on modeling with cross-covariance models. The R package RandomFields supports the simulation, the parameter estimation and the prediction in particular for the linear model of coregionalization, the multivariate Matern models, the delay model, and a spectrum of physically motivated vector valued models. An example on weather data is considered, illustrating the use of RandomFields for parameter estimation and prediction.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [31] Mixing Properties of Multivariate Infinitely Divisible Random Fields
    Riccardo Passeggeri
    Almut E. D. Veraart
    Journal of Theoretical Probability, 2019, 32 : 1845 - 1879
  • [32] Composite Likelihood Inference for Multivariate Gaussian Random Fields
    Moreno Bevilacqua
    Alfredo Alegria
    Daira Velandia
    Emilio Porcu
    Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 448 - 469
  • [33] Multivariate operator-self-similar random fields
    Li, Yuqiang
    Xiao, Yimin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (06) : 1178 - 1200
  • [34] Mixing Properties of Multivariate Infinitely Divisible Random Fields
    Passeggeri, Riccardo
    Veraart, Almut E. D.
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (04) : 1845 - 1879
  • [35] Multivariate generalized Laplace distribution and related random fields
    Kozubowski, Tomasz J.
    Podgorski, Krzysztof
    Rychlik, Igor
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 113 : 59 - 72
  • [36] Training Conditional Random Fields with Multivariate Evaluation Measures
    Suzuki, Jun
    McDermott, Erik
    Isozaki, Hideki
    COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, 2006, : 217 - 224
  • [37] A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields
    Chagneau, Pierrette
    Mortier, Frederic
    Picard, Nicolas
    Bacro, Jean-Noel
    BIOMETRICS, 2011, 67 (01) : 97 - 105
  • [38] Rejoinder to 'Efficient prediction designs for random fields'
    Mueller, Werner G.
    Pronzato, Luc
    Rendas, Joao
    Waldl, Helmut
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2015, 31 (02) : 201 - 203
  • [39] Discussion of 'Efficient prediction designs for random fields'
    Notz, William
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2015, 31 (02) : 198 - 200
  • [40] Prediction intervals for integrals of Gaussian random fields
    De Oliveira, Victor
    Kone, Bazoumana
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 83 : 37 - 51