Diagnosis of Fluid Leaks in Pipelines Using Dynamic PCA

被引:27
|
作者
Santos-Ruiz, I. [1 ]
Lopez-Estrada, F. R. [1 ]
Puig, V. [2 ]
Perez-Perez, E. J. [1 ]
Mina-Antonio, J. D. [3 ]
Valencia-Palomo, G. [4 ]
机构
[1] TURIX Dynam Diag & Control Grp, Tecnol Nacl Mexico, Inst Tecnol Tuxtla Gutierrez, Carr Panamer Km 1080, Tuxtla Gutierrez 29050, Chiapas, Mexico
[2] UPC, Dept Automat Control ESAII, Rambla de St Nebridi 10, Terrassa 08222, Spain
[3] CENIDET, Tecnol Nacl Mexico, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Inst Tecnol Hermosillo, Tecnol Nacl Mexico, Ave Tecnol & Periferico Poniente S-N, Hermosillo 83170, Sonora, Mexico
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 24期
关键词
Fault diagnosis; Principal component analysis; Data-driven fault detection; Pipelines; Fluid leaks; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1016/j.ifacol.2018.09.604
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a data-driven system based on PCA is described to detect and quantify fluid leaks in an experimental pipeline. A dynamic PCA implementation (DPCA) was used to capture the process dynamics because the system variables are time-correlated. To detect leaks online, the Hotelling's T-2 statistic and the squared prediction error (SPE) were used as residuals, which are compared against statistically defined thresholds from a set of training data. To determine the number of delays to be included in the DPCA model as well as the number of principal components to be used, a tuning process was executed to find the residual with the optimal number of delays and components that showed the best correlation between the residuals and the leakage size. This allowed the construction of a regression model to estimate the flow rate of the leaks directly from the residual. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:373 / 380
页数:8
相关论文
共 50 条
  • [21] Dynamic analysis of the suspended composite pipelines conveying pulsating fluid
    Khudayarov, B. A.
    Komilova, Kh M.
    Turaev, F. Zh
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 75
  • [22] Active Localization of Gas Leaks Using Fluid Simulation
    Asenov, Martin
    Rutkauskas, Marius
    Reid, Derryck
    Subr, Kartic
    Ramamoorthy, Subramanian
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02): : 1776 - 1783
  • [23] Leak detection in pipelines based on PCA
    Hu, R
    Ye, H
    Wang, GZ
    Lu, C
    [J]. 2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 1985 - 1989
  • [24] ON THE DYNAMIC-RESPONSE OF FLUID-FILLED BURIED PIPELINES
    MISHRA, BK
    UPADHYAY, PC
    [J]. JOURNAL OF SOUND AND VIBRATION, 1987, 117 (01) : 59 - 67
  • [25] Cerebrospinal fluid leaks
    Ranko Mladina
    Neven Skitarelić
    [J]. Wiener klinische Wochenschrift, 2007, 119 : 198 - 198
  • [26] Cerebrospinal fluid leaks
    Mladina, Ranko
    Skitarelic, Neven
    [J]. WIENER KLINISCHE WOCHENSCHRIFT, 2007, 119 (5-6) : 198 - 198
  • [27] Dynamic response of buried fluid-conveying pipelines subjected to blast loading using shell theory
    Ling, Xue
    Zhang, Y. F.
    Wang, Yan Qing
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (05) : 4883 - 4893
  • [28] REPAIR OF LEAKS IN THIN WALL HIGH PRESSURE PIPELINES USING COMPOSITE REINFORCING TECHNOLOGIES
    Alexander, Chris
    Talbi, Salem
    Kania, Richard
    Rickert, Jon
    [J]. PROCEEDINGS OF THE ASME 2020 13TH INTERNATIONAL PIPELINE CONFERENCE (IPC2020), VOL 3, 2020,
  • [29] Dynamic response of buried fluid-conveying pipelines subjected to blast loading using shell theory
    Xue Ling
    Y. F. Zhang
    Yan Qing Wang
    [J]. Arabian Journal for Science and Engineering, 2021, 46 : 4883 - 4893
  • [30] Features of the search for leaks in pipelines of heat networks using the acoustic-emission method
    Lapshin, B. M.
    Ovchinnikov, A. L.
    Chekalin, A. S.
    [J]. RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2011, 47 (10) : 710 - 717