Multivariate Normal α-Stable Exponential Families

被引:5
|
作者
Louati, Mahdi [1 ]
Masmoudi, Afif [2 ]
Mselmi, Farouk [3 ]
机构
[1] Sfax Natl Sch Elect & Telecommun, BP 1163, Sfax, Tunisia
[2] Sfax Fac Sci, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
[3] Sfax Univ, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
关键词
Drifted stable distributions; infinitely divisible; natural exponential families; normal alpha-stable distributions; variance function; GENERALIZED VARIANCE; DISTRIBUTIONS; MODEL; VOLATILITY; TIME;
D O I
10.1007/s00009-015-0562-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The normal inverse Gaussian distributions are used to introduce the class of multivariate normal alpha-stable distributions. Some fundamental properties of these new distributions are established. We give the expression of the variance function of the generated natural exponential family and we use the L,vy-Khintchine representation to determine the associated L,vy measure. We also study the relationship between these distributions and the multivariate inverse Gaussian ones.
引用
收藏
页码:1307 / 1323
页数:17
相关论文
共 50 条
  • [31] FREE EXPONENTIAL FAMILIES AS KERNEL FAMILIES
    Bryc, Wlodzimierz
    [J]. DEMONSTRATIO MATHEMATICA, 2009, 42 (03) : 657 - 672
  • [32] Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies
    Inouye, David I.
    Ravikumar, Pradeep
    Dhillon, Inderjit S.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [33] GEOMETRY OF EXPONENTIAL FAMILIES
    EFRON, B
    [J]. ANNALS OF STATISTICS, 1978, 6 (02): : 362 - 376
  • [34] Simulation in Exponential Families
    CNRS
    不详
    不详
    [J]. ACM Trans Model Comput Simul, 3 (203-223):
  • [35] Deep Exponential Families
    Ranganath, Rajesh
    Tang, Linpeng
    Charlin, Laurent
    Blei, David M.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 762 - 771
  • [36] Closures of exponential families
    Csiszár, I
    Matús, F
    [J]. ANNALS OF PROBABILITY, 2005, 33 (02): : 582 - 600
  • [37] Satisfiability with exponential families
    Scheder, Dominik
    Zumstein, Philipp
    [J]. THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2007, PROCEEDINGS, 2007, 4501 : 148 - +
  • [38] EXPONENTIAL MIXTURES AND QUADRATIC EXPONENTIAL-FAMILIES
    MCCULLAGH, P
    [J]. BIOMETRIKA, 1994, 81 (04) : 721 - 729
  • [39] A new method for adding two parameters to a family of distributions with application to the normal and exponential families
    Barakat, H. M.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (03): : 359 - 372
  • [40] A new method for adding two parameters to a family of distributions with application to the normal and exponential families
    H. M. Barakat
    [J]. Statistical Methods & Applications, 2015, 24 : 359 - 372