Present works deal with the insight into the friction-induced stick-slip vibration which takes place by virtue of the difference in the values of static and kinetic friction between the rubbing surfaces, which causes decrease in friction force with velocity. The produced intermittent motion is objectionable as it is the cause of serious nuisance, power loss, quadrant glitch, limit cycle, inaccuracy in control, etc. A comprehensive description of this phenomenon by capturing the effect of influencing parameter has become challenging research task for system dynamics especially for control. In present work, the motion of mass on rough surface, being dragged at constant velocity, is studied by stiction model. In this research work, it has been tried to capture the effect of influencing parameters to define the acceptable and optimum criteria of selecting them to ensure motion without stick slip. The study is performed by varying relevant parameters like coefficient of friction, viscous damping, driving velocity, ratio of static friction to kinetic friction. The outcome of this study is the range of these parameters and their combinations, for which friction-induced disturbances are the minimum. The results obtained in this work may be used as a generalized guide line for reducing and avoiding these disturbances.