Finite element model;
Neuron stimulation;
Neuron-electrode interface;
Neuro-electronics;
Lymnaea neurons;
Electrode geometry;
DEEP BRAIN-STIMULATION;
NA+-CHANNELS;
ARRAYS;
CELLS;
D O I:
10.1016/j.jneumeth.2015.03.024
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Background: Microelectrode arrays have been used successfully for neuronal stimulation both in vivo and in vitro. However, in most instances currents required to activate the neurons have been in unphysiological ranges resulting in neuronal damage and cell death. There is a need to develop electrodes which require less stimulation current for neuronal activation with physiologically relevant efficacy and frequencies. New method: The objective of the present study was to examine and compare the stimulation efficiency of different electrode geometries at the resolution of a single neuron. We hypothesized that increasing the electrode perimeter will increase the maximum current density at the edges and enhance stimulation efficiency. To test this postulate, the neuronal stimulation efficacy of common circular electrodes (smallest perimeter) was compared with star (medium perimeter), and spiral (largest perimeter with internal boundaries) electrodes. We explored and compared using both a finite element model and in vitro stimulation of neurons isolated from Lymnaea central ganglia. Results: Interestingly, both the computational model and the live neuronal stimulation experiments demonstrated that the common circular microelectrode requires less stimulus to activate a cell compared to the other two electrode shapes with the same surface area. Our data further revealed that circular electrodes exhibit the largest sealing resistance, stimulus transfer, and average current density among the three types of electrodes tested. Comparison with existing methods: Average current density and not the maximum current density at the edges plays an important role in determining the electrode stimulation efficiency. Conclusion: Circular shaped electrodes are more efficient in inducing a change in neuronal membrane potential. (C) 2015 Elsevier B.V. All rights reserved.
机构:
Univ Tecn Federico Santa Maria, Dept Obras Civiles, Av Espana 1680, Valparaiso, ChileUniv Tecn Federico Santa Maria, Dept Obras Civiles, Av Espana 1680, Valparaiso, Chile
Cardenas, Manuel
Filonzi, Angelo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USAUniv Tecn Federico Santa Maria, Dept Obras Civiles, Av Espana 1680, Valparaiso, Chile
Filonzi, Angelo
Delgadillo, Rodrigo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tecn Federico Santa Maria, Dept Obras Civiles, Av Espana 1680, Valparaiso, ChileUniv Tecn Federico Santa Maria, Dept Obras Civiles, Av Espana 1680, Valparaiso, Chile