SEC-Learn: Sensor Edge Cloud for Federated Learning Invited Paper

被引:0
|
作者
Aichroth, Patrick [3 ]
Antes, Christoph [4 ]
Gembatzka, Pierre [8 ]
Graf, Holger [5 ]
Johnson, David S. [3 ]
Jung, Matthias [4 ]
Kaempfe, Thomas [9 ]
Kleinberger, Thomas [4 ]
Koellmer, Thomas [3 ]
Kuhn, Thomas [4 ]
Kutter, Christoph [1 ]
Krueger, Jens [10 ]
Loroch, Dominik M. [10 ]
Lukashevich, Hanna [3 ]
Laleni, Nellie [9 ]
Zhang, Lei [1 ]
Leugering, Johannes [6 ]
Fernandez, Rodrigo Martin [6 ]
Mateu, Loreto [6 ]
Mojumder, Shaown [9 ]
Prautsch, Benjamin [6 ]
Pscheidl, Ferdinand [1 ]
Roscher, Karsten [7 ]
Schneickert, Soeren [4 ]
Vanselow, Frank [1 ]
Wallbott, Paul [2 ]
Walter, Oliver [2 ]
Weber, Nico [10 ]
机构
[1] EMFT, Fraunhofer Res Inst Microsyst & Solid State Techn, Munich, Germany
[2] Fraunhofer Inst Intelligent Anal & Informat Syst, St Augustin, Germany
[3] Fraunhofer Inst Digital Media Technol IDMT, Ilmenau, Germany
[4] Fraunhofer Inst Expt Software Engn IESE, Kaiserslautern, Germany
[5] Fraunhofer Inst Comp Graph Res IGD, Darmstadt, Germany
[6] Fraunhofer Inst Integrated Circuits IIS, Erlangen, Germany
[7] Fraunhofer Inst Cognit Syst IKS, Munich, Germany
[8] Fraunhofer Inst Microelect Circuits & Syst IMS, Duisburg, Germany
[9] Fraunhofer Inst Photon Microsyst IPMS, Dresden, Germany
[10] Fraunhofer Inst Ind Math ITWM, Kaiserslautern, Germany
关键词
SNN; Federated learning; Edge cloud; Neuromorphic hardware; Next generation computing; Virtual prototyping; NVM; DEEP NEURAL-NETWORKS;
D O I
10.1007/978-3-031-04580-6_29
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the slow-down of Moore's Law and Dennard Scaling, new disruptive computer architectures are mandatory. One such new approach is Neuromorphic Computing, which is inspired by the functionality of the human brain. In this position paper, we present the projected SEC-Learn ecosystem, which combines neuromorphic embedded architectures with Federated Learning in the cloud, and performance with data protection and energy efficiency.
引用
收藏
页码:432 / 448
页数:17
相关论文
共 50 条
  • [31] VHFL: A Cloud-Edge Model Verification Technique for Hierarchical Federated Learning
    Wu, Tiantong
    Bandara, H. M. N. Dilum
    Yeoh, Phee Lep
    Thilakarathna, Kanchana
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 1304 - 1309
  • [32] Efficient federated learning for fault diagnosis in industrial cloud-edge computing
    Qizhao Wang
    Qing Li
    Kai Wang
    Hong Wang
    Peng Zeng
    Computing, 2021, 103 : 2319 - 2337
  • [33] Towards Efficient HW Acceleration in Edge-Cloud Infrastructures: The SERRANO Approach Invited Paper
    Ferikoglou, Aggelos
    Oroutzoglou, Ioannis
    Kokkinis, Argyris
    Danopoulos, Dimitrios
    Masouros, Dimosthenis
    Chondrogiannis, Efthymios
    Gomez, Aitor Fernandez
    Kretsis, Aristotelis
    Kokkinos, Panagiotis
    Varvarigos, Emmanouel
    Siozios, Kostas
    EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, SAMOS 2021, 2022, 13227 : 354 - 367
  • [34] Deep reinforcement learning based scheduling strategy for federated learning in sensor-cloud systems
    Zhang, Tinghao
    Lam, Kwok-Yan
    Zhao, Jun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 144 : 219 - 229
  • [35] ChainFL: A Simulation Platform for Joint Federated Learning and Blockchain in Edge/Cloud Computing Environments
    Qu, Guanjin
    Cui, Naichuan
    Wu, Huaming
    Li, Ruidong
    Ding, Yuemin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (05) : 3572 - 3581
  • [36] Client-Edge-Cloud Hierarchical Federated Learning Based on Generative Adversarial Networks
    Li, Dawei
    Guo, Ying
    Liu, Di
    Ren, Yangkun
    Hu, Ruinan
    Guan, Zhenyu
    2023 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH, ICKG, 2023, : 160 - 167
  • [37] A Federated Learning Framework for Cloud-Edge Collaborative Fault Diagnosis of Wind Turbines
    Jiang, Guoqian
    Zhao, Kai
    Liu, Xiufeng
    Cheng, Xu
    Xie, Ping
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 23170 - 23185
  • [38] Learning From Your Neighbours: Mobility-Driven Device-Edge-Cloud Federated Learning
    Zhang, Songli
    Zheng, Zhenzhe
    Wu, Fan
    Li, Bingshuai
    Shao, Yunfeng
    Chen, Guihai
    PROCEEDINGS OF THE 52ND INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2023, 2023, : 462 - 471
  • [39] Federated learning in cloud-edge collaborative architecture: key technologies, applications and challenges
    Bao, Guanming
    Guo, Ping
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [40] Privacy-Preserving Incentive Mechanism Design for Federated Cloud-Edge Learning
    Liu, Tianyu
    Di, Boya
    An, Peng
    Song, Lingyang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2588 - 2600