SEC-Learn: Sensor Edge Cloud for Federated Learning Invited Paper

被引:0
|
作者
Aichroth, Patrick [3 ]
Antes, Christoph [4 ]
Gembatzka, Pierre [8 ]
Graf, Holger [5 ]
Johnson, David S. [3 ]
Jung, Matthias [4 ]
Kaempfe, Thomas [9 ]
Kleinberger, Thomas [4 ]
Koellmer, Thomas [3 ]
Kuhn, Thomas [4 ]
Kutter, Christoph [1 ]
Krueger, Jens [10 ]
Loroch, Dominik M. [10 ]
Lukashevich, Hanna [3 ]
Laleni, Nellie [9 ]
Zhang, Lei [1 ]
Leugering, Johannes [6 ]
Fernandez, Rodrigo Martin [6 ]
Mateu, Loreto [6 ]
Mojumder, Shaown [9 ]
Prautsch, Benjamin [6 ]
Pscheidl, Ferdinand [1 ]
Roscher, Karsten [7 ]
Schneickert, Soeren [4 ]
Vanselow, Frank [1 ]
Wallbott, Paul [2 ]
Walter, Oliver [2 ]
Weber, Nico [10 ]
机构
[1] EMFT, Fraunhofer Res Inst Microsyst & Solid State Techn, Munich, Germany
[2] Fraunhofer Inst Intelligent Anal & Informat Syst, St Augustin, Germany
[3] Fraunhofer Inst Digital Media Technol IDMT, Ilmenau, Germany
[4] Fraunhofer Inst Expt Software Engn IESE, Kaiserslautern, Germany
[5] Fraunhofer Inst Comp Graph Res IGD, Darmstadt, Germany
[6] Fraunhofer Inst Integrated Circuits IIS, Erlangen, Germany
[7] Fraunhofer Inst Cognit Syst IKS, Munich, Germany
[8] Fraunhofer Inst Microelect Circuits & Syst IMS, Duisburg, Germany
[9] Fraunhofer Inst Photon Microsyst IPMS, Dresden, Germany
[10] Fraunhofer Inst Ind Math ITWM, Kaiserslautern, Germany
关键词
SNN; Federated learning; Edge cloud; Neuromorphic hardware; Next generation computing; Virtual prototyping; NVM; DEEP NEURAL-NETWORKS;
D O I
10.1007/978-3-031-04580-6_29
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the slow-down of Moore's Law and Dennard Scaling, new disruptive computer architectures are mandatory. One such new approach is Neuromorphic Computing, which is inspired by the functionality of the human brain. In this position paper, we present the projected SEC-Learn ecosystem, which combines neuromorphic embedded architectures with Federated Learning in the cloud, and performance with data protection and energy efficiency.
引用
收藏
页码:432 / 448
页数:17
相关论文
共 50 条
  • [1] Invited Paper: Hyperdimensional Computing for Resilient Edge Learning
    Barkam, Hamza Errahmouni
    Jeon, SungHeon Eavn
    Yun, Sanggeon
    Yeung, Calvin
    Zou, Zhuowen
    Jiao, Xun
    Srinivasa, Narayan
    Imani, Mohsen
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,
  • [2] Client-Edge-Cloud Hierarchical Federated Learning
    Liu, Lumin
    Chang, Jun
    Song, S. H.
    Letaief, Khaled B.
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [3] An Efficient Storage Solution for Cloud/Edge Computing Infrastructures (Invited Paper)
    Makris, Antonios
    Korontanis, Ioannis
    Psomakelis, Evangelos
    Tserpes, Konstantinos
    2024 IEEE INTERNATIONAL CONFERENCE ON SERVICE-ORIENTED SYSTEM ENGINEERING, SOSE, 2024, : 92 - 101
  • [4] Cloudlets: at the Leading Edge of Mobile-Cloud Convergence (Invited Paper)
    Satyanarayanan, Mahadev
    Chen, Zhuo
    Ha, Kiryong
    Hu, Wenlu
    Richter, Wolfgang
    Pillai, Padmanabhan
    2014 6TH INTERNATIONAL CONFERENCE ON MOBILE COMPUTING, APPLICATIONS AND SERVICES (MOBICASE), 2014, : 1 - 9
  • [5] A Systematic Review on Federated Learning in Edge-Cloud Continuum
    Sambit Kumar Mishra
    Subham Kumar Sahoo
    Chinmaya Kumar Swain
    SN Computer Science, 5 (7)
  • [6] Edge-cloud Collaborative Learning with Federated and Centralized Features
    Li, Zexi
    Li, Qunwei
    Zhou, Yi
    Zhong, Wenliang
    Zhang, Guannan
    Wu, Chao
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1949 - 1953
  • [7] Proactive Caching in the Edge-Cloud Continuum with Federated Learning
    Zyrianoff, Ivan
    Montecchiari, Leonardo
    Trotta, Angelo
    Gigli, Lorenzo
    Kamienski, Carlos
    Di Felice, Marco
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 234 - 240
  • [8] Federated Contrastive Learning for Dermatological Disease Diagnosis via On-device Learning (Invited Paper)
    Wu, Yawen
    Zeng, Dewen
    Wang, Zhepeng
    Sheng, Yi
    Yang, Lei
    James, Alaina J.
    Shi, Yiyu
    Hu, Jingtong
    2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [9] Personalized client-edge-cloud hierarchical federated learning in mobile edge computing
    Ma, Chunmei
    Li, Xiangqian
    Huang, Baogui
    Li, Guangshun
    Li, Fengyin
    Journal of Cloud Computing, 2024, 13 (01)
  • [10] Federated Learning Deployments of Industrial Applications on Cloud, Fog, and Edge Resources
    Blumauer-Hiessl, Thomas
    Schulte, Stefan
    Lakani, Safoura Rezapour
    Keusch, Alexander
    Pinter, Elias
    Kaufmann, Thomas
    Schall, Daniel
    2024 IEEE 8TH INTERNATIONAL CONFERENCE ON FOG AND EDGE COMPUTING, ICFEC 2024, 2024, : 19 - 26