Changes of heating and cooling degree days over China in response to global warming of 1.5 °C, 2 °C, 3 °C and 4 °C

被引:40
|
作者
Shi Ying [1 ]
Zhang Dong-Feng [2 ]
Xu Ying [1 ]
Zhou Bo-Tao [1 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing 100081, Peoples R China
[2] Shanxi Meteorol Serv, Shanxi Climate Ctr, Taiyuan 030006, Shanxi, Peoples R China
关键词
Regional climate model; Global warming of 1.5 degrees C; 2 degrees C; 3 degrees C; and 4 degrees C; Heating degree days; Cooling degree days; China; CLIMATE-CHANGE; ELECTRICITY DEMAND; ENERGY DEMAND; SECTOR;
D O I
10.1016/j.accre.2018.06.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering population factor are investigated based on four sets of climate change simulations over East Asia using the regional climate model version 4.4 (RegCM4.4) driven by the global models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR. Under global warming of 1.5 degrees C, 2 degrees C, 3 degrees C, and 4 degrees C, significant decrease of HDD can be found over China without considering population factor, with greater decrease over high elevation and high latitude regions, including the Tibetan Plateau, the northern part of Northeast China, and Northwest China; while population-weighted HDD increased in areas where population will increase in the future, such as Beijing, Tianjin, parts of southern Hebei, northern Shandong and Henan provinces. Similarly, the CDD projections with and without considering population factor are largely different. Specifically, without considering population, increase of CDD were observed over most parts of China except the Tibetan Plateau where the CDD remained zero because of the cold climate even under global warming; while considering population factor, the future CDD decreases in South China and increases in North China, the Sichuan Basin, and the southeastern coastal areas, which is directly related to the population changes. The different future changes of HDD and CDD when considering and disregarding the effects of population show that population distribution plays an important role in energy consumption, which should be considered in future research.
引用
收藏
页码:192 / 200
页数:9
相关论文
共 50 条
  • [31] Australian climate extremes at 1.5 °C and 2 °C of global warming
    King, Andrew D.
    Karoly, David J.
    Henley, Benjamin J.
    NATURE CLIMATE CHANGE, 2017, 7 (06) : 412 - +
  • [32] Drylands climate response to transient and stabilized 2°C and 1.5°C global warming targets
    Wei, Yun
    Yu, Haipeng
    Huang, Jianping
    Zhou, Tianjun
    Zhang, Meng
    Ren, Yu
    CLIMATE DYNAMICS, 2019, 53 (3-4) : 2375 - 2389
  • [33] Drylands climate response to transient and stabilized 2 °C and 1.5 °C global warming targets
    Yun Wei
    Haipeng Yu
    Jianping Huang
    Tianjun Zhou
    Meng Zhang
    Yu Ren
    Climate Dynamics, 2019, 53 : 2375 - 2389
  • [34] Changes in mean and extreme climates over China with a 2°C global warming
    Lang XianMei
    Sui Yue
    CHINESE SCIENCE BULLETIN, 2013, 58 (12): : 1453 - 1461
  • [35] Future changes in coverage of 1.5 °C and 2 °C warming thresholds
    Tian, Di
    Dong, Wenjie
    Zhang, Han
    Guo, Yan
    Yang, Shili
    Dai, Tanlong
    SCIENCE BULLETIN, 2017, 62 (21) : 1455 - 1463
  • [36] Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C
    You, Qinglong
    Wu, Fangying
    Shen, Liucheng
    Pepin, Nick
    Jiang, Zhihong
    Kang, Shichang
    GLOBAL AND PLANETARY CHANGE, 2020, 192 (192)
  • [37] Projections of thermal growing season indices over China under global warming of 1.5 °C and 2.0 °C
    Lu, Mengge
    Sun, Huaiwei
    Yan, Dong
    Xue, Jie
    Yi, Shanzhen
    Gui, Dongwei
    Tuo, Ye
    Zhang, Wenxin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 781
  • [38] Future Changes of Summer Heat Waves Over Urban Agglomerations in Eastern China Under 1.5°C and 2.0°C Global Warming
    Ma, Hongyun
    Wang, Ying
    Lin, Zhaohui
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [39] Potential changes in temperature extreme events under global warming at 1.5 °C and 2 °C over Cote d'Ivoire
    N'Datchoh, E. T.
    Kouadio, K.
    Silue, S.
    Bamba, A.
    Naabil, E.
    Dje, K. B.
    Diedhiou, A.
    Sylla, M. B.
    Anquetin, S.
    Lennard, C.
    ENVIRONMENTAL RESEARCH-CLIMATE, 2022, 1 (01):
  • [40] Regional changes in extreme heat events in China under stabilized 1.5 °C and 2.0 °C global warming
    Zhang Gu-Wei
    Zeng Gang
    Iyakaremye, Vedaste
    You Qing-Long
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2020, 11 (03) : 198 - 209