On the Numerical Simulation of Unsteady Solutions for the 2D Boussinesq Paradigm Equation

被引:0
|
作者
Christov, Christo I. [1 ]
Kolkovska, Natalia [2 ]
Vasileva, Daniela [2 ]
机构
[1] Univ SW Louisiana, Dept Math, POB 41010, Lafayette, LA 70504 USA
[2] Bulgarian Acad Sci, Inst Math & Informat, POB 373, BU-1113 Sofia, Bulgaria
来源
关键词
SOLITONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For the solution of the 2D Boussinesq Paradigm Equation (BPE) an implicit, unconditionally stable difference scheme with second order truncation error in space and time is designed. Two different asymptotic boundary conditions are implemented: the trivial one, and a condition that matches the expected asymptotic behavior of the profile at infinity. The available in the literature solutions of BPE of type of stationary localized waves are used as initial conditions for different phase speeds and their evolution is investigated numerically. We find that, the solitary waves retain their identity for moderate times; for larger times they either transform into diverging propagating waves or blow-up.
引用
收藏
页码:386 / +
页数:2
相关论文
共 50 条
  • [41] Global regularity of solutions of 2D Boussinesq equations with fractional diffusion
    Xu, Xiaojing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 677 - 681
  • [42] Semi-analytical solutions and numerical simulations of 2D SH wave equation
    Wang Mei-Xia
    Yang Ding-Hui
    Song Guo-Jie
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2012, 55 (03): : 914 - 924
  • [43] A numerical study of steady and unsteady cavitation on a 2d hydrofoil
    Li, Zi-ru
    Pourquie, Mathieu
    Van Terwisga, Tom J. C.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON HYDRODYNAMICS (ICHD - 2010), 2010, : 770 - 777
  • [44] Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique
    Khan, Faheem
    Arshad, Tayyaba
    Ghaffar, Abdul
    Nisar, Kottakkaran Sooppy
    Kumar, Devendra
    AIMS MATHEMATICS, 2020, 5 (03): : 2295 - 2306
  • [45] Highly accurate numerical solutions with repeated Richardson extrapolation for 2D laplace equation
    Marchi, Carlos Henrique
    Novak, Leandro Alberto
    Santiago, Cosmo Damiao
    da Silveira Vargas, Ana Paula
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (12-13) : 7386 - 7397
  • [46] NUMERICAL SIMULATIONS OF 2D PERIODIC UNSTEADY CAVITATING FLOWS
    Wu Lei
    Lu Chuan-jing
    Li Jie
    Chen Xin
    JOURNAL OF HYDRODYNAMICS, 2006, 18 (03) : 341 - 344
  • [47] Numerical Simulations of 2D Periodic Unsteady Cavitating Flows
    Lei Wu
    Chuan-jing Lu
    Jie Li
    Xin Chen
    Journal of Hydrodynamics, 2006, 18 : 341 - 344
  • [48] A numerical study of steady and unsteady cavitation on a 2d hydrofoil
    Zi-ru Li
    Mathieu Pourquie
    Tom J. C. Van Terwisga
    Journal of Hydrodynamics, 2010, 22 : 728 - 735
  • [49] A numerical study of steady and unsteady cavitation on a 2d hydrofoil
    Li, Zi-ru
    Pourquie, Mathieu
    Van Terwisga, Tom J. C.
    JOURNAL OF HYDRODYNAMICS, 2010, 22 (05) : 728 - 735