Convergence of a block coordinate descent method for nondifferentiable minimization

被引:1418
|
作者
Tseng, P [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
block coordinate descent; nondifferentiable minimization; stationary point; Gauss-Seidel method; convergence; quasiconvex functions; pseudoconvex functions;
D O I
10.1023/A:1017501703105
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the convergence properties of a (block) coordinate descent method applied to minimize a nondifferentiable (nonconvex) function f(x(I),..., x(n)) with certain separability and regularity properties. Assuming that f is continuous on a compact level set, the subsequence convergence of the iterates to a stationary point is shown when either f is pseudoconvex in every pair of coordinate blocks from among N - 1 coordinate blocks orf has at most one minimum in each of N - 2 coordinate blocks. If f is quasiconvex and hemivariate in every coordinate block, then the assumptions of continuity off and compactness of the level set may be relaxed further. These results are applied to derive new land old) convergence results for the proximal minimization algorithm, an algorithm of Arimoto and Blahut, and an algorithm of Han. They are applied also to a problem of blind source separation.
引用
收藏
页码:475 / 494
页数:20
相关论文
共 50 条
  • [21] A coordinate gradient descent method for nonsmooth separable minimization
    Tseng, Paul
    Yun, Sangwoon
    MATHEMATICAL PROGRAMMING, 2009, 117 (1-2) : 387 - 423
  • [22] A Coordinate Gradient Descent Method for Nonsmooth Nonseparable Minimization
    Bai, Zheng-Jian
    Ng, Michael K.
    Qi, Liqun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2009, 2 (04) : 377 - 402
  • [23] On the convergence of inexact block coordinate descent methods for constrained optimization
    Cassioli, A.
    Di Lorenzo, D.
    Sciandrone, M.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 231 (02) : 274 - 281
  • [24] A block coordinate descent method for sensor network localization
    Mitsuhiro Nishijima
    Kazuhide Nakata
    Optimization Letters, 2022, 16 : 1051 - 1071
  • [25] A block coordinate descent method for sensor network localization
    Nishijima, Mitsuhiro
    Nakata, Kazuhide
    OPTIMIZATION LETTERS, 2022, 16 (03) : 1051 - 1071
  • [26] A coordinate gradient descent method for ℓ1-regularized convex minimization
    Sangwoon Yun
    Kim-Chuan Toh
    Computational Optimization and Applications, 2011, 48 : 273 - 307
  • [27] A coordinate gradient descent method for a"" 1-regularized convex minimization
    Yun, Sangwoon
    Toh, Kim-Chuan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (02) : 273 - 307
  • [28] A coordinate descent homotopy method for linearly constrained nonsmooth convex minimization
    Jung, Y. M.
    Yun, S.
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02): : 342 - 358
  • [29] On the convergence of a randomized block coordinate descent algorithm for a matrix least squares problem
    Du, Kui
    Ruan, Cheng-Chao
    Sun, Xiao-Hui
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [30] A cyclic block coordinate descent method with generalized gradient projections
    Bonettini, Silvia
    Prato, Marco
    Rebegoldi, Simone
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 288 - 300