Phase space quantization and the uncertainty principle

被引:23
|
作者
de Gosson, MA [1 ]
机构
[1] Blekinge Inst Technol, SE-37179 Karlskrona, Sweden
[2] Univ Colorado, Boulder, CO 80302 USA
关键词
quantum cells; quantum uncertainty; symplectic non-squeezing; Lagrangian tori;
D O I
10.1016/j.physleta.2003.09.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We replace the usual heuristic notion of quantum cell by that of 'quantum blob', which does not depend on the dimension of phase space. Quantum blobs, which are defined in terms of symplectic capacities, are canonical invariants. They allow us to prove an exact uncertainty principle for semiclassically quantized Hamiltonian systems. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:365 / 369
页数:5
相关论文
共 50 条
  • [41] Reduced phase space quantization of FRW universe
    Amemiya, Fumitoshi
    Koike, Tatsuhiko
    SPANISH RELATIVITY MEETING (ERE 2010): GRAVITY AS A CROSSROAD IN PHYSICS, 2011, 314
  • [42] QUANTIZATION ON A CLASS OF SUBMANIFOLDS OF PHASE-SPACE
    BATALIN, IA
    OGIEVETSKY, OV
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 90 (01): : 29 - 38
  • [43] QUANTIZATION OF RELATIVISTIC SYSTEMS ON PHASE-SPACE
    ALI, ST
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1982, 32 (06) : 609 - 613
  • [44] Phase space quantization and the operator moment problem
    Kiukas, J.
    Lahti, P.
    Ylinen, K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [45] Phase space quantization, noncommutativity, and the gravitational field
    Chatzistavrakidis, Athanasios
    PHYSICAL REVIEW D, 2014, 90 (02):
  • [46] Novel phase-space orbits and quantization
    Ahmed, Z
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (43): : L701 - L706
  • [47] QUANTIZATION OF NONRELATIVISTIC PHASE SPACE AND THE STANDARD MODEL
    Zenczykowski, Piotr
    ACTA PHYSICA POLONICA B, 2009, : 525 - 539
  • [48] Phase-space noncommutative extension of the Robertson-Schrodinger formulation of Ozawa's uncertainty principle
    Bastos, Catarina
    Bernardini, Alex E.
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    PHYSICAL REVIEW D, 2015, 91 (06):
  • [49] Reply to "Comment on 'Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty' "
    Montesinos, Merced
    Torres del Castillo, G. F.
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [50] Robust stochastic maximum principle: A measured space as uncertainty set
    Poznyak, AS
    STOCHASTIC THEORY AND CONTROL, PROCEEDINGS, 2002, 280 : 385 - 397