Convergence analysis of the two preconditioned iterative methods for M-matrix linear systems

被引:3
|
作者
Liu, Qingbing [1 ]
Huang, Jian [1 ]
Zeng, Shouzhen [1 ]
机构
[1] Zhejiang Wanli Univ, Comp Sci & Informat Technol Coll, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
M-matrix; Matrix splitting; Krylov subspace methods; Preconditioner; HERMITIAN SPLITTING METHODS; COMPARISON-THEOREMS; IMPROVEMENTS; SCHEMES;
D O I
10.1016/j.cam.2014.11.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the two preconditioners I +(S) over cap and I +(S) over cap+ R for solving M-matrix linear systems and discuss the convergence of the two preconditioned iterative methods. Meanwhile, we obtain comparison theorems between the two preconditioned iterative methods and consider the solution of M-matrix linear systems by preconditioned Krylov subspace methods. Numerical experiments are given to validate the performance of the preconditioners. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 50 条
  • [21] Convergence Analysis of Modified Iterative Methods to Solve Linear Systems
    H. Saberi Najafi
    S. A. Edalatpanah
    A. H. Refahi Sheikhani
    Mediterranean Journal of Mathematics, 2014, 11 : 1019 - 1032
  • [22] Convergence Analysis of the New Splitting Preconditioned SOR-Type Iterative Methods for the Linear System
    Lei, Gang
    Yang, Jianhong
    Chen, Yihu
    Yang, Jianwei
    Li, Jian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (05) : 1716 - 1726
  • [23] Convergence rates of two-stage iterative methods for linear systems
    Cai, Fang
    Xiong, Yue-Shan
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2005, 27 (03): : 100 - 104
  • [24] The Z-matrix preconditioned AOR iterative methods for Linear System
    Zhou, Yuzhong
    Fang, Ping
    Zhang, Xin
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 210 - 213
  • [25] SPARSE PRECONDITIONED ITERATIVE METHODS FOR DENSE LINEAR-SYSTEMS
    YAN, Y
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (05): : 1190 - 1200
  • [26] On the convergence of iterative methods for semidefinite linear systems
    Lee, Young-Ju
    Wu, Jinbiao
    Xu, Jinchao
    Zikatanov, Ludmil
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (03) : 634 - 641
  • [27] ON THE CONVERGENCE OF SOME GENERALIZED PRECONDITIONED ITERATIVE METHODS
    MISSIRLIS, NM
    EVANS, DJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (04) : 591 - 596
  • [28] PRECONDITIONED AOR ITERATIVE METHODS FOR SOLVING MULTI-LINEAR SYSTEMS WITH M-TENSOR
    Qi, Meng
    Shao, Xinhui
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2021, 39 (3-4): : 587 - 600
  • [29] Preconditioned USSOR Iterative Method for H-matrix Linear Systems
    Zhou, Ting
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 1 - 7
  • [30] Convergence of SSOR multisplitting method for an M-matrix
    Yun J.H.
    Han Y.D.
    Oh S.
    Journal of Applied Mathematics and Computing, 2007, 24 (1-2) : 273 - 282