Boron-iron nanochains for selective electrocatalytic reduction of nitrate

被引:51
|
作者
Ni, Fanfan [1 ]
Ma, Yuanyuan [1 ]
Chen, Junliang [1 ]
Luo, Wei [1 ,2 ]
Yang, Jianping [1 ,2 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Inst Funct Mat, Shanghai 201620, Peoples R China
关键词
Nanostructured iron; Boron doping; Nitrate reduction reaction; Electrocatalysis; ZERO-VALENT IRON; NITROGEN; REMOVAL; NANOPARTICLES; PERFORMANCE; INTERFACE; CATALYSTS; NITRITE; FE; DENITRIFICATION;
D O I
10.1016/j.cclet.2021.03.042
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalysis of nitrate reduction reaction (NRR) has been considered to be a promising nitrate removal technology. Developing a highly effective iron-based electrocatalyst is an essential challenge for NRR. Herein, boron-iron nanochains (B-Fe NCs) as efficient NRR catalysts were prepared via a facile low-cost and scalable method. The Fe/B ratio of the B-Fe NCs-x can be elaborately adjusted to optimize the NRR catalytic performance. Due to the electron transfer from boron to metal, the metal-metal bonds are weakened and the electron density near the metal atom centers are rearranged, which are favor of the conversion from NO3 into N-2. Moreover, the well-crosslinked chain-like architectures benefit the mass/electron transport to boost the exposure of abundant catalytic active sites. Laboratory experiments demonstrated that the optimized B-Fe NCs catalyst exhibits superior intrinsic electrocatalytic NRR activity of high nitrate conversion (similar to 80%), ultrahigh nitrogen selectivity (similar to 99%) and excellent long-term reactivity in the mixed electrolyte system (0.02 mol/L NaCl and 0.02 mol/L Na2SO4 mixed electrolyte), and the electrocatalytic activity of the material shows poor performance at low chloride ion concentration (Nitrate conversion of similar to 61% and nitrogen selectivity of similar to 57% in 0.005 mol/L NaCl and 0.035 mol/L Na2SO4 mixed electrolyte). This study provides a broad application prospect for further exploring the high-efficiency and low-cost iron-based functional nanostructures for electrocatalytic nitrate reduction. (C) 2021 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2073 / 2078
页数:6
相关论文
共 50 条
  • [11] Electrocatalytic reduction of nitrate in water
    Peel, JW
    Reddy, KJ
    Sullivan, BP
    Bowen, JM
    WATER RESEARCH, 2003, 37 (10) : 2512 - 2519
  • [12] Metallenes for electrocatalytic nitrate reduction
    Tao, Lei
    Zhao, Yitao
    Sun, Hong
    MATERIALS TODAY CHEMISTRY, 2024, 42
  • [13] Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia
    Lu, Xihui
    Wei, Jinshan
    Lin, Hexing
    Li, Yi
    Li, Ya-yun
    ACS APPLIED NANO MATERIALS, 2024, 7 (12) : 14654 - 14664
  • [14] Structural and petrological evolution of the boron-iron Tayozhnoye deposit (central Aldan, Russia)
    Pertsev, NN
    Kulakovskii, AL
    GEOLOGY OF ORE DEPOSITS, 2002, 44 (01) : 1 - 17
  • [15] Cu-Doped Iron Oxide for the Efficient Electrocatalytic Nitrate Reduction Reaction
    Wang, Jing
    Wang, Yian
    Cai, Chao
    Liu, Yushen
    Wu, Duojie
    Wang, Maoyu
    Li, Menghao
    Wei, Xianbin
    Shao, Minhua
    Gu, Meng
    NANO LETTERS, 2023, 23 (05) : 1897 - 1903
  • [16] Selective Electrocatalytic Reduction of Nitrous Oxide to Dinitrogen with an Iron Porphyrin Complex
    Stanley, Jared S.
    Wang, Xinran S.
    Yang, Jenny Y.
    ACS CATALYSIS, 2023, 13 (19): : 12617 - 12622
  • [17] Tandem electrocatalytic nitrate reduction reaction
    Cang, Chuanfei
    Zheng, Haoquan
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2023, 42 (08)
  • [18] Electrocatalytic reduction of nitrate and selenate by NapAB
    Gates, Andrew J.
    Butler, Clive S.
    Richardson, David J.
    Butt, Julea N.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2011, 39 : 236 - 242
  • [19] Selective Electrocatalytic Nitrate Reduction to Ammonia Using Nafion-Covered Cu Electrodeposits
    Mondol, Profulla
    Thind, Jashmeen K.
    Barile, Christopher J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (17): : 8054 - 8061
  • [20] Electrocatalytic reduction of nitrate by copper/iron oxides supported on nitrogen doped carbon spheres
    Yan, Xing
    Fang, Xin
    Lu, Shuaishuai
    Luo, Haopeng
    Tan, Ling
    Liu, Yun
    Chen, Huan
    Jiang, Fang
    JOURNAL OF HAZARDOUS MATERIALS ADVANCES, 2023, 10