The accuracy of fast multipole methods for Maxwell's equations

被引:53
|
作者
Dembart, B [1 ]
Yip, E [1 ]
机构
[1] Boeing Co, Seattle, WA 98124 USA
来源
关键词
D O I
10.1109/99.714593
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The multilevel fast multipole method can provide fast, accurate solutions to electromagnetic-scattering problems, provided its users select the FMM degree and FMM cube size appropriately. This article discusses errors associated with truncating multipole expansions and methods for selecting an appropriate set of parameters.
引用
收藏
页码:48 / 56
页数:9
相关论文
共 50 条
  • [21] Mimetic finite difference methods for Maxwell's equations and the equations of Magnetic Diffusion
    Hyman, J.M.
    Shashkov, M.
    2001, Electromagnetics Academy (32):
  • [22] Fast multipole methods on graphics processors
    Gumerov, Nail A.
    Duraiswami, Ramani
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (18) : 8290 - 8313
  • [23] Fast solution of boundary integral equations by using multigrid methods and multipole evaluation techniques
    Gaspar, C
    BOUNDARY ELEMENTS XIX, 1997, : 603 - 612
  • [24] Scalable Distributed Fast Multipole Methods
    Hu, Qi
    Gumerov, Nail A.
    Duraiswami, Ramani
    2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS), 2012, : 270 - 279
  • [25] A pedestrian introduction to fast multipole methods
    YING Lexing Department of Mathematics and ICES
    ScienceChina(Mathematics), 2012, 55 (05) : 1043 - 1051
  • [26] Fast multipole and multifunction PEEC methods
    Antonini, G
    Ruehli, AE
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2003, 2 (04) : 288 - 298
  • [27] Adaptive fast multipole methods on the GPU
    Goude, Anders
    Engblom, Stefan
    JOURNAL OF SUPERCOMPUTING, 2013, 63 (03): : 897 - 918
  • [28] A pedestrian introduction to fast multipole methods
    Lexing Ying
    Science China Mathematics, 2012, 55 : 1043 - 1051
  • [29] On the application of lacunae-based methods to Maxwell's equations
    Tsynkov, SV
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (01) : 126 - 149
  • [30] Overlapping Schwarz methods for Maxwell's equations in three dimensions
    Andrea Toselli
    Numerische Mathematik, 2000, 86 : 733 - 752