MULTIVARIATE COMPOSITE COPULAS

被引:1
|
作者
Xie, Jiehua [1 ]
Fang, Jun [2 ]
Yang, Jingping [3 ]
Bu, Lan [2 ]
机构
[1] Nanchang Inst Technol, Sch Business Adm, Nanchang 330099, Jiangxi, Peoples R China
[2] Peking Univ, Dept Financial Math, Beijing 100871, Peoples R China
[3] Peking Univ, Dept Financial Math, LMEQF, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Copula construction; multivariate composite copula; uniform convergence; reproduction property; ACTUARIAL SCIENCE; BERNSTEIN COPULA; MODEL; TRANSFORMATIONS; COMONOTONICITY; DISTRIBUTIONS; FINANCE;
D O I
10.1017/asb.2021.30
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we present a method for generating a copula by composing two arbitrary n-dimensional copulas via a vector of bivariate functions, where the resulting copula is named as the multivariate composite copula. A necessary and sufficient condition on the vector guaranteeing the composite function to be a copula is given, and a general approach to construct the vector satisfying this necessary and sufficient condition via bivariate copulas is provided. The multivariate composite copula proposes a new framework for the construction of flexible multivariate copula from existing ones, and it also includes some known classes of copulas. It is shown that the multivariate composite copula has a clear probability structure, and it satisfies the characteristic of uniform convergence as well as the reproduction property for its component copulas. Some properties of multivariate composite copulas are discussed. Finally, numerical illustrations and an empirical example on financial data are provided to show the advantages of the multivariate composite copula, especially in capturing the tail dependence.
引用
收藏
页码:145 / 184
页数:40
相关论文
共 50 条
  • [31] Essential closures and supports of multivariate copulas
    Ruankong, P.
    Sumetkijakan, S.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (06) : 762 - 768
  • [32] SEMIPARAMETRIC ESTIMATION OF THE PARAMETERS OF MULTIVARIATE COPULAS
    Liebscher, Eckhard
    [J]. KYBERNETIKA, 2009, 45 (06) : 972 - 991
  • [33] Idempotent and multivariate copulas with fractal support
    Trutschnig, Wolfgang
    Fernandez Sanchez, Juan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3086 - 3096
  • [34] On a family of multivariate copulas for aggregation processes
    Durante, Fabrizio
    Quesada-Molina, Jose Juan
    Ubeda-Flores, Manuel
    [J]. INFORMATION SCIENCES, 2007, 177 (24) : 5715 - 5724
  • [35] On New Types of Multivariate Trigonometric Copulas
    Chesneau, Christophe
    [J]. APPLIEDMATH, 2021, 1 (01): : 3 - 17
  • [36] A characterization of multivariate independence using copulas
    Gonzalez-Barrios, Jose M.
    Gutierrez-Pena, Eduardo
    Nieves, Juan D.
    Rueda, Raul
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (16) : 5716 - 5726
  • [37] Multivariate Archimedean quasi-copulas
    Nelsen, RB
    Quesada-Molina, JJ
    Rodríguez-Lallena, JA
    Ubeda-Flores, M
    [J]. DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING, 2002, : 179 - 185
  • [38] Evolution of multivariate copulas in discrete processes
    Ishimura, Naoyuki
    Yoshizawa, Yasukazu
    [J]. INTERNATIONAL CONFERENCE ON APPLIED ECONOMICS (ICOAE), 2012, 1 : 186 - 192
  • [39] Application of copulas to multivariate control charts
    Verdier, Ghislain
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (12) : 2151 - 2159
  • [40] Multivariate bilateral gamma, copulas, CoSkews and CoKurtosis
    Madan, Dilip B.
    Wang, King
    [J]. INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2022, 09 (02)