Optical solitons and modulation instability of the resonant nonlinear Schrodinger equations in (3+1)-dimensions

被引:16
|
作者
Hosseini, K. [1 ]
Ansari, R. [2 ]
Zabihi, A. [3 ]
Shafaroody, A. [4 ]
Mirzazadeh, M. [5 ]
机构
[1] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran
[2] Univ Guilan, Dept Mech Engn, Rasht, Iran
[3] Ahrar Inst Technol & Higher Educ, Dept Mech Engn, Rasht, Iran
[4] Islamic Azad Univ, Rasht Branch, Young Researchers & Elite Club, Rasht, Iran
[5] Univ Guilan, East Guilan, Fac Technol & Engn, Dept Engn Sci, Rudsar 4489163157, Iran
来源
OPTIK | 2020年 / 209卷
关键词
(3+1)-dimensional resonant nonlinear; Schrodinger equations; Different forms of nonlinearities; Exp(a) and hyperbolic function techniques; Optical solitons; MI analysis; PARTIAL-DIFFERENTIAL-EQUATION; GINZBURG-LANDAU EQUATION; TZITZEICA-TYPE EQUATIONS; TRAVELING-WAVE SOLUTIONS; INTER-MODAL DISPERSIONS; BIREFRINGENT FIBERS; CUBIC NONLINEARITY; DARK; KERR; PERTURBATION;
D O I
10.1016/j.ijleo.2020.164584
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the present paper, the (3 + 1)-dimensional resonant nonlinear Schrodinger (RNLS) equations arising in optical bullets with different forms of nonlinearities are studied using the exp(a) and hyperbolic function techniques. As an outcome, a number of optical solitons along with their physical features to the models are formally extracted. The modulation instability (MI) analysis of the models is also presented through the use of the linear stability scheme.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Modulation Instability of Copropagating Optical Beams in Fractional Coupled Nonlinear Schrodinger Equations
    Zhang, Jinggui
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (06)
  • [22] Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrodinger's equation for Davydov solitons
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2018, 32 (07) : 858 - 873
  • [23] Optical solitons of the resonant nonlinear Schrodinger equation with arbitrary index
    Kudryashov, Nikolay A.
    [J]. OPTIK, 2021, 235
  • [24] Bright optical solitons or light bullets for a (3+1)-dimensional generalized nonlinear Schrodinger equation with the distributed coefficients
    Yin, Hui-Min
    Tian, Bo
    Zhen, Hui-Ling
    Chai, Jun
    Wu, Xiao-Yu
    [J]. MODERN PHYSICS LETTERS B, 2016, 30 (25):
  • [25] Bright and dark optical vortex solitons of (3+1)-dimensional spatially modulated quintic nonlinear Schrodinger equation
    Xu, Yun-Jie
    [J]. OPTIK, 2017, 147 : 1 - 5
  • [26] Analytical solutions to the generalized (3+1)-dimensional nonlinear Schrodinger equations
    Wang, Xiaoli
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 3910 - 3912
  • [27] Vortex solitons of the (3+1)-dimensional spatially modulated cubic-quintic nonlinear Schrodinger equation with the transverse modulation
    Chen, Rui-Pin
    Dai, Chao-Qing
    [J]. NONLINEAR DYNAMICS, 2017, 90 (03) : 1563 - 1570
  • [28] Modulation analysis and optical solitons of perturbed nonlinear Schrodinger equation
    Houwe, A.
    Sabi'u, J.
    Betchewe, G.
    Inc, M.
    Doka, S. Y.
    [J]. REVISTA MEXICANA DE FISICA, 2021, 67 (04)
  • [29] Dynamics of solitons of the generalized (3+1)-dimensional nonlinear Schrodinger equation with distributed coefficients
    Liu Xiao-Bei
    Li Biao
    [J]. CHINESE PHYSICS B, 2011, 20 (11)
  • [30] Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations (vol 54, 261, 2022)
    Inan, Ibrahim Enam
    Inc, Mustafa
    Rezazadeh, Hadi
    Akinyemi, Lanre
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (09)