Simultaneous online model identification and production optimization using modifier adaptation

被引:3
|
作者
Matias, Jose [1 ]
Kungurtsev, Vyacheslav [2 ]
Egan, Malcolm [3 ]
机构
[1] NTNU, Trondheim, Norway
[2] Czech Tech Univ, Prague, Czech Republic
[3] Univ Lyon, INRIA, INSA Lyon, Lyon, France
关键词
Real-time optimization; Modifier adaptation; Reinforcement learning; Process monitoring; ALGORITHM;
D O I
10.1016/j.jprocont.2021.12.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key problem for many industrial processes is to limit exposure to system malfunction. The system health state can be represented by different models. However, it is often the case that control cost minimization is prioritized over model identification. Indeed, model identification is typically not considered in production optimization, which can lead to delayed awareness and alerting of malfunction. In this paper, we address the problem of simultaneous production optimization and system identification. We develop new algorithms based on modifier adaptation and reinforcement learning, which efficiently manage the tradeoff between cost minimization and identification. For two case studies based on a chemical reactor and subsea oil and gas exploration, we show that our algorithms yield control costs comparable to existing methods while yielding rapid identification of system degradation. (C)& nbsp;2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:110 / 120
页数:11
相关论文
共 50 条
  • [1] Online Model Maintenance via Output Modifier Adaptation
    Matias, Jose
    Jaschke, Johannes
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (30) : 13750 - 13766
  • [2] Real-Time optimization using the Modifier Adaptation methodology
    Rodriguez-Blanco, T.
    Sarabia, D.
    de Prada, C.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2018, 15 (02): : 133 - 144
  • [3] Dynamic optimization integrating modifier adaptation using transient measurements
    Oliveira-Silva, Erika
    de Prada, Cesar
    Navia, Daniel
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 149
  • [4] Real-time optimization using the modifier adaptation methodology
    Rodríguez-Blanco, T.
    Sarabia, D.
    de Prada, C.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2018, 15 (02): : 133 - 144
  • [5] Online Feedback Optimization of Compressor Stations with Model Adaptation using Gaussian Process Regression
    Zagorowska, M.
    Degner, M.
    Ortmann, L.
    Ahmed, A.
    Bolognani, S.
    Chanona, E. A. del Rio
    Mercangoz, M.
    JOURNAL OF PROCESS CONTROL, 2023, 121 : 119 - 133
  • [6] Use of Convex Model Approximations for Real-Time Optimization via Modifier Adaptation
    Francois, Gregory
    Bonvin, Dominique
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (33) : 11614 - 11625
  • [7] Real-time optimization modifier adaptation approach using quadratic approximation of the plant-model mismatch function
    Bottari, Agustin
    JOURNAL OF PROCESS CONTROL, 2024, 136
  • [8] Real-Time Optimization via Modifier Adaptation using Partial Plant Models
    Papasavvas, A.
    Ferreira, T. de Avila
    Marchetti, A. G.
    Bonvin, D.
    IFAC PAPERSONLINE, 2017, 50 (01): : 4666 - 4671
  • [9] Real-time optimization of wind farms using modifier adaptation and machine learning
    Andersson, Leif Erik
    Imsland, Lars
    WIND ENERGY SCIENCE, 2020, 5 (03) : 885 - 896
  • [10] A robust modifier adaptation method via Hessian augmentation using model uncertainties
    Speakman, Jack
    Papasavvas, Aris
    Francois, Gregory
    JOURNAL OF PROCESS CONTROL, 2021, 99 : 28 - 40