Use of Convex Model Approximations for Real-Time Optimization via Modifier Adaptation

被引:53
|
作者
Francois, Gregory [1 ]
Bonvin, Dominique [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Automat, CH-1015 Lausanne, Switzerland
关键词
STRATEGIES; OPTIMALITY;
D O I
10.1021/ie3032372
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Real-time optimization (RTO) via modifier adaptation is a class of methods for which measurements are used to iteratively adapt the model via input-affine additive terms. The modifier terms correspond to the deviations between the measured and predicted constraints on the one hand, and the measured and predicted cost and constraint gradients on the other. If the iterative scheme converges, these modifier terms guarantee that the converged point satisfies the Karush-Kuhn-Tucker (KKT) conditions for the plant. Furthermore, if upon convergence the plant model predicts the correct curvature of the cost function, convergence to a (local) plant optimum is guaranteed. The main advantage of modifier adaptation lies in the fact that these properties do not rely on specific assumptions regarding the nature of the uncertainty. In other words, in addition to rejecting the effect of parametric uncertainty like most RTO methods, modifier adaptation can also handle process disturbances and structural plant-model mismatch. This paper shows that the use of a convex model approximation in the modifier-adaptation framework implicitly enforces model adequacy. The approach is illustrated through both a simple numerical example and a simulated continuous stirred-tank reactor.
引用
收藏
页码:11614 / 11625
页数:12
相关论文
共 50 条
  • [1] An Approach to Deal with Non-Convex Models in Real-Time Optimization with Modifier Adaptation
    Garcia, Maximiliano
    Ruiz, Juan Pablo
    Basualdo, Marta
    [J]. 12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2015, 37 : 899 - 904
  • [2] Real-Time Optimization via Modifier Adaptation using Partial Plant Models
    Papasavvas, A.
    Ferreira, T. de Avila
    Marchetti, A. G.
    Bonvin, D.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 4666 - 4671
  • [3] Modifier-Adaptation Methodology for Real-Time Optimization
    Marchetti, A.
    Chachuat, B.
    Bonvin, D.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (13) : 6022 - 6033
  • [4] Comparison of Modifier Adaptation Schemes in Real-Time Optimization
    Gao, Weihua
    Wenzel, Simon
    Engell, Sebastian
    [J]. IFAC PAPERSONLINE, 2015, 48 (08): : 182 - 187
  • [5] A new modifier adaptation methodology for real-time optimization
    Chen, Chunhua
    Jia, Mingxing
    You, Fuqiang
    Wang, Fuli
    Kou, Wenqi
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (04) : 1320 - 1327
  • [6] Real-Time optimization using the Modifier Adaptation methodology
    Rodriguez-Blanco, T.
    Sarabia, D.
    de Prada, C.
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2018, 15 (02): : 133 - 144
  • [7] Analysis of output modifier adaptation for real-time optimization
    Papasavvas, A.
    Ferreira, T. de Avila
    Marchetti, A. G.
    Bonvin, D.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2019, 121 : 285 - 293
  • [8] Real-time optimization using the modifier adaptation methodology
    Rodríguez-Blanco, T.
    Sarabia, D.
    de Prada, C.
    [J]. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2018, 15 (02): : 133 - 144
  • [9] Active directional modifier adaptation for real-time optimization
    Singhal, M.
    Marchetti, A. G.
    Faulwasser, T.
    Bonvin, D.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2018, 115 : 246 - 261
  • [10] Real-Time Optimization of Uncertain Process Systems via Modifier Adaptation and Gaussian Processes
    Ferreira, Tafarel de Avila
    Shukla, Harsh A.
    Faulwasser, Timm
    Jones, Colin N.
    Bonvin, Dominique
    [J]. 2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 466 - 471