Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling

被引:53
|
作者
Voelker, B. [1 ]
Marton, P. [2 ]
Elsaesser, C. [2 ]
Kamlah, M. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Mat Res 2, D-76344 Eggenstein Leopoldshafen, Germany
[2] Fraunhofer Inst Mech Mat IWM, D-79108 Freiburg, Germany
关键词
Ferroelectric materials; Multiscale modeling; First-Principles calculations; Phase-field modeling; Parameter identification; GROUND-STATE PROPERTIES; CONTINUUM THERMODYNAMICS; TETRAGONAL PBTIO3; PEROVSKITE; 1ST-PRINCIPLES; 4D-TRANSITION; EVOLUTION; METALS;
D O I
10.1007/s00161-011-0188-7
中图分类号
O414.1 [热力学];
学科分类号
摘要
To link the atomic level and the mesoscale within a knowledge-based multiscale modeling approach for ferroelectric materials, a method is suggested to transfer results from first-principles calculations into a phase-field model. DFT calculations and atomistic simulations are applied and provide a set of intrinsic and extrinsic material properties for PbTiO3 and tetragonal Pb(Zr0.5Ti0.5)O-3. The Helmholtz free energy of the phase-field model that contains all crystallographic and domain wall information is discussed in detail, and a sensitivity analysis is performed to identify the coefficients of the energy function. Then, a method is developed to adjust the coefficients of the Helmholtz free energy solely based on results from first-principles calculations. Full sets of adjusted energy coefficients for PbTiO3 and Pb(Zr0.5Ti0.5)O-3 are presented and discussed, as well the limits of the suggested adjustment method.
引用
收藏
页码:435 / 451
页数:17
相关论文
共 50 条
  • [32] Phase-field crystal modeling of shape transition of strained islands in heteroepitaxy
    Cheng Chen
    Zheng Chen
    Jing Zhang
    XiuJuan Du
    [J]. Science China Physics, Mechanics and Astronomy, 2012, 55 : 2042 - 2048
  • [33] Phase-field modeling of geologic fractures
    Choo, Jinhyun
    [J]. FRONTIERS IN BUILT ENVIRONMENT, 2024, 10
  • [34] Phase-field modeling of eutectic solidification
    Kim, SG
    Kim, WT
    Suzuki, T
    Ode, M
    [J]. JOURNAL OF CRYSTAL GROWTH, 2004, 261 (01) : 135 - 158
  • [35] Phase-Field Modeling of Electrochemical Phenomena
    Bhattacharyya, Saswata
    Bandyopadhyay, Soumya
    Choudhury, Abhik
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2016, 96 (03) : 257 - 268
  • [36] Developments in phase-field modeling of thermoelastic and two-component materials
    Charach, C
    Chen, CK
    Fife, PC
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (5-6) : 1141 - 1164
  • [37] Phase-field modeling of ductile fracture
    M. Ambati
    T. Gerasimov
    L. De Lorenzis
    [J]. Computational Mechanics, 2015, 55 : 1017 - 1040
  • [38] Phase-field modeling of void evolution and swelling in materials under irradiation
    Li YuLan
    Hu ShenYang
    Sun Xin
    Gao Fei
    Henager, Charles H., Jr.
    Khaleel, Mohammad
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (05) : 856 - 865
  • [39] Phase-field modeling of void evolution and swelling in materials under irradiation
    HENAGER Charles H Jr
    KHALEEL Mohammad
    [J]. Science China(Physics,Mechanics & Astronomy), 2011, (05) : 856 - 865
  • [40] Phase-field modeling of thermal shock fracture in functionally graded materials
    Pang, Yong
    Li, Peidong
    Li, Dingyu
    Zhou, Xiandong
    Fan, Haidong
    Wang, Qingyuan
    [J]. ENGINEERING FRACTURE MECHANICS, 2024, 307