Fibroblast growth factor 10 (FGF10) has multiple biological activities involved in angiogenesis, mitogenesis, cellular differentiation, development, and tissue injury repair. Our previous studies revealed that treatment of FGF10 remarkably stimulated HaCaT cell proliferation and abbreviated cell apoptosis. However, the molecular mechanisms remain largely unknown. The aim of this study was to investigate FGF10-induced modifications in gene expression in the HaCaT cells by using the cDNA microarray technique. The microarray data showed that FGF10 modified the expression of 2117 genes, 861 being up-regulated and 1256 down-regulated, using a threshold of twofold. Eight of nine candidate genes, validated by real-time quantitative polymerase chain reaction (qPCR), were correlated well with the array data. The GenMAPP and MappFinder software packages were further used for pathway analysis of these significantly altered genes. In support of multiple biological functions for FGF10, several gene pathways were found to be involved in processes of cell cycle, DNA repair, apoptosis, development, and wound healing. These data also provide a basis to further investigation of FGF10 molecular mechanisms.