ASYMPTOTIC BEHAVIOR FOR RANDOM WALK IN RANDOM ENVIRONMENT WITH HOLDING TIMES

被引:0
|
作者
Mao Mingzhi [1 ]
Li Zhimin [2 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Anhui Inst Sci & Technol, Dept Appl Math & Phys, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
random walk; random environment; central limit theorem; law of large numbers; renewal structure; LARGE DEVIATIONS; LARGE NUMBERS; LAW;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we mainly discuss the asymptotic behavior for multi-dimensional continuous-time random walk in random environment with holding times. By constructing a renewal structure and using the point "environment viewed from the particle", under General Kalikow's Condition, we show the law of large numbers (LLN) and central limit theorem (CLT) for the escape speed of random walk.
引用
收藏
页码:1696 / 1708
页数:13
相关论文
共 50 条
  • [41] Asymptotic properties of a bold random walk
    Serva, Maurizio
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [42] Asymptotic analysis of the elephant random walk
    Coletti, Cristian F.
    Papageorgiou, Ioannis
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (01):
  • [43] A method for analyzing the asymptotic behavior of the walk process in restricted random walk cluster algorithm
    Ranke, Markus
    Geyer-Schulz, Andreas
    [J]. ADVANCES IN DATA ANALYSIS, 2007, : 51 - +
  • [44] Random walk in Markovian environment
    Dolgopyat, Dmitry
    Keller, Gerhard
    Liverani, Carlangelo
    [J]. ANNALS OF PROBABILITY, 2008, 36 (05): : 1676 - 1710
  • [45] ASYMPTOTIC-BEHAVIOR OF THE LOCAL TIME OF A RECURRENT RANDOM-WALK
    JAIN, NC
    PRUITT, WE
    [J]. ANNALS OF PROBABILITY, 1984, 12 (01): : 64 - 85
  • [46] Random walk in changing environment
    Amir, Gideon
    Benjamini, Itai
    Gurel-Gurevich, Ori
    Kozma, Gady
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (12) : 7463 - 7482
  • [47] Asymptotic Behavior of Large Deviation Probabilities for a Simple Oscillating Random Walk
    Vetrova E.L.
    [J]. Journal of Mathematical Sciences, 2022, 262 (4) : 452 - 456
  • [48] ON ASYMPTOTIC BEHAVIOR OF LOCAL PROBABILITIES OF NONLINEAR BOUNDARY CROSSING BY A RANDOM WALK
    Rahimov, Fada G.
    Hashimova, Tarana E.
    Khalilov, Vugar S.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2016, 42 (01): : 73 - 80
  • [49] On Asymptotic Behavior of Mean Values of Some Functionals on Branching Random Walk
    Platonova M.V.
    Ryadovkin K.S.
    [J]. Journal of Mathematical Sciences, 2024, 281 (1) : 127 - 141
  • [50] Asymptotic behavior of the transition probability of a simple random walk on a line graph
    Shirai, T
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (01) : 99 - 108